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ABSTRACT

The transmission of two dimensional images over large
distances from far ranging space probes has become an important
factor in space exploratory research. A common requirement for
such transmission systems is a large bandwidth, low noise interfer-
ence communication link for pleasing reception.

Standard communication systems transmit images as they are
normally viewed by light sensing devices such as cameras, photo-
sensitive emulsions, and the human eye., This dissertation presents
the results of investigations into the feasibility of transmitting the
Fourier transform of an image rather than the spatial domain repre-
sentation. The motivations behind the study of image transmission
in the Fourier domain are threefold. First, the Fourier transform
tends to compact the image energy in the Fourier domain such that
large bandwidth reductions can be obtained. Second, noise energy
introduced in the Fourier domain tends to spread over the entire
retransformed image, and thus becomes less offensive to the eye.
Finally, image enhancement can be accomplished by using nonlinear
quantization and coding techniques on the Fourier domain.

In this dissertation a proof of the equality of entropy in the
spatial and Fourier domains of an image is derived. Adaptive
quantization methods which compensate for the tremendous dynamic
range of information in the Fourier domain are developed. A high
speed two dimensional Fourier transforming computer algorithm is
designed, and experimental results are obtained through a digital
computer implementation of the Fourier coding communication
system. Experimental verification of the equal entropy concepts
provided by information theoretic principles is presented.

A noise immunity coding technique is designed for the Fourier
domain utilizing the concepts of error correcting codes. Consider-
ably better quality transmission over noisy channels is experienced
with the Fourier coding technique as opposed to spatial domain
techniques.

Very large bandwidth reductions are obtained by filtering in
the Fourier domain. In addition a novel sequential image construc-
tion communication system is presented utilizing the bandwidth
reduction potentialities of the Fourier domain.
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Image enhancement and evaluation techniques are presented.
Correlated noise is removed from images by spatial filtering in the
Fourier domain. The matched filter, which maximizes the signal
to noise ratio for additive noise, is implemented as a tool for eval-
uating pre-processed and post-processed images by indicating the
degree of correlation between the two images.

The results of this research indicate that the Fourier coding
of images is a feasible concept for image transmission. Fourier ,
coding provides an inherent noise immunity and permits a significant
bandwidth reduction without tolerable image degradation. Finally,
Fourier domain processing techniques can be utilized to remove
~image defects.
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CHAPTER 1

INTRODUCTION

1.1 'Rese'arc}; Motivation

Television has become an.inc:reasingly important means of
communication in scientifié, military, and commercial applications.
Recently, particxilar emphasis has been placed on spacecraft explor-
atory missions in which television éictures are transmitted over
great distances. "', Important problemé in the tra;nsrnission of tele~
vision for such an application are the high bandwidth and low noise
interference reqﬁirements for \éué,lity reception,

Over the years many, in'\'res tigations. have been made into the
reduction of bandwidth in the tra;nsmission of video scenes [17. The
investigations have often made ﬁse of the communication model
depicted in figure 1-1 in which a video source is quantized, coded,
transmitted over. a channel, and then decoded for reconstruction.
Diverse quantizing, scanning, coding, and modulation schemes have
been developed [17. Theée teéhniQues have been restricted to
processing in the spatial domain of an image or scene. The spatial
domain is the two dimensiéﬁél 'éc;ordinate system associated with a

scene as normally viewed by‘the eye or optical scanning device.
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.Generally, results have not been favorable using spatial domain
methods.

The research reported here deals with the general communi-~
cation model of figﬁre 1-2. The approach taken to the communication
problem is different from earlier efforts and affords further insight
into the video bandwidth-transmission problem. Rather than investi-
gating properties of a scene, characterized by a bounded positive
real two dimensional function, the properties of the two dimensional
Fourier transfofm of the scene are studied. This introduces the
frequency domain of an image as that coordinate system which
corresponds to the Fourier transform of the image. The question
then arises as to what properties, if any, of the f;‘equency domain
will allow for more efficient video transmission in terms of noise
immunity, bandwidth reduction, more efficient coding, and improved
quality reconstx;uction.

The motivations behind the study of image transmission in the
Fourier domain are threefold. First, the Fourier transform, in
general, tends to compact the image enefgy in the frequency domain
such that more efficient scanning can be implérnented. Second, noise
energy introduced in the frequency domain spreads its energy over
the entire retransformed image thus becoming less offensive to the
human eye. Finally, image enhancement can be accomplished during

the transmission process by using nonlinear quantizing and coding
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schemes.

1.2 Researéh Problem

The problem presented for research consists of an analytic
and experimental investigation of the feasibility of transmitting the
Fourier domain of an image as an improifement to normal spatial
domain transmission. The analytic portionb of the research is
involved with studying the propertiés of the Fourier domain from
an information theoretic viewpoint in order to derive necessary
guidelines for developing the communication techniques needed for
successful transmission of that domain over a communication link.
In addition, entropy concepts are developed‘ and density functions
derived in order l;o construct quantization and coding rules for trans-
mission. The experiméntal portion of the research is oriented
toward the implementation of tecﬁniques sugg'es ted by analytic deri-
vations. Thisk task includes \}er'ification of equal bandwidth require-
ments in both the spatial and Fourier domains and implementation of
quantization, noise immimity, and bandwidth réduction coding rules.
The experimentatiﬁn could have been performed bjr énalog optical
data processing. However, it was felt that with the considerable
flexibility anci dynamic range of digital computers, the more success-~
ful results would be obtained from a completely digital experimental

approach. A digital computér fa‘cility' has been developed solely for
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~ this research project. Required hardware modif‘i.éeitions for pictur‘e
processing have been made to the digita;l’ computer so that ’two
dim'ensional displays are possibyle. :Addition‘ally, a’ 1a.r'ge’ software '
progra’mmin’g effort has been underté,kgn ‘.tlo‘d_ex‘relop the réquis.ite
prografns for imége'proceSSing, _communication chan”h‘e’l‘i éimulation,
| and receiver reconstruction simdlétion. The expe“r"i.rn,e,ntail digitél
effort is based on‘ the development pf an effi»ci,ent‘,f‘ouri'er transform
prog,'r‘arn without which the compute‘r computation time would have‘
been far too extensive to initiate even the svma‘Lllest. ﬁorti'pn- of‘ex;.)éri-.-

mental results presentéd here.

1.3 Chapter Descriptions

Chapter. 1 consists of the introduction t§ this report, and
broadly outlines the research problem and objectives of investigation.

Chapter 2 presents a discussion of two dimensional Fouz"ief
transforms. Discrete Fourier transforms are defined and a one
dimensional high speed computer algorithni is de:ived. The one
dimensional algorithm is incorporat'ed into a two dimensiohal format;
and experimental verification is presented in supp‘ort’ of the x}alidity
of the computerized transformation. | |

Chapter 3 analyzés the determini_stic‘properties of the Fouﬁer
domain due to certain restrictions on the spatial domain, This

chapter includes the study of symmetry, dynamic range, and
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nonnegative-d.eﬁ‘nite functions associated with the frequency 'domain.
An entropy calculé.tion is presentedyverifying th’at, from an infdrma-
Lion theo’rietic viewpoint, the entrbpy or uncértainty of the spatial
domain and freéuepcy dofnéin is identic‘al.

Chapter 4 developé two methods of quantitétive imagé evalﬁa-
tion. The first 1s based on sfatistical péraﬁetéré, and the second is
basgd on a two dimensional matched filtering concept. Experimental
results are chpéred with the sﬁbjective viéwihg properties ‘of the
human eye. |

Chapter 5 includes a derivation of the first and second moments
of the spectral components in the frequency doméin. A‘ probé.bility
density distribution is described whose variance changes as a function
of frequency. This distribution forms the basis of a frequency adap-
tive quantization law. An expression for minimum quantization noise
is derived and results of experimental quantization rules are p.re-
sented. These results substantiate the equal bandwidth requirements
for both the spatial and Fourier domains.

Chapter 6 presents results of investigations into the inherent
noise immunity of Fourier image coding. Specifically, binary
symmetric channel noise is discussed; and a coding technique is
presented to obtain reasonably good quality images transmitted
through a very noisy channel. In addition, techniques for correlated

noise removal by processing in the frequency domain are discussed.



. Chapter 7 incorporates the results of béﬁdwidthfi‘,educ’:tion"
studies. A u_niqué seéuentia,l image ¢ ons’t‘r‘ucti'on te'{‘:hni}‘;ue‘, whxch
yields vérry large bahdwid’th re-duc tion‘s, is ‘kpr‘es_ebnte'd. "’S.om; &‘r’a.w- |
‘backs are indicated, especiéllf in the ap’plyic.ia‘ti‘ovn 'pf 'spatiél ’bandw‘id.th
i'éductior; techniqu,és to the frequency domain.: v’Ce_rtaiﬁ coding‘
schemes are presented for s‘mall‘red;u'ct";on‘ factors, and éomparisons
with spatié.l domain results are made. -

Chapter 8 summarizes the reéultsfof the research and offers
suggestions» for future ’in,vest’:ig‘ations .
The ,appendiées icontavin sections on ha’rdware and software

systems used in the research.



CHAPTER 2

FOURIER TRANSFORMS

2.1 Two Dimensional Fourier Transforms

The two dimensional Fourier transformation is a linear opera-
tor, and consequently lends itself to a linear systems analysis
approach analogous to tile time-freque'ncy studies of the communica-
tions enginveer.‘ However, rather than operating on a one dimensional
causal time funcrzqtion, the two dimensional Fourier transformation
becomes the coupling operation between a non-causal two dimensional
space domain and spatial frequency domain. Two dimensional spatial
frequency cofn.cevpts are not new, They }ﬁve been developed exten-
sively by the optical engineer in studies of optical data processing
systems [2,37.

The tﬁo dimensional Fourier transform can be expressed

mathematically as

F(u,v) = f(x,y) exp { i(ux+vy)}dxdy _‘(2-"1)

ge—3 8

o

In this equation f(x,y) is a two dimensional function defined on a plane
with coordinates (x,y), hereafter ‘referred to as the space domain.

The space domain may be assigned the physical dimension of length
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along a reference axis. F(u,v) is a two dimensioﬁal fﬁncfio‘nkdéfinedy' o
oné plane with boOfdinatés (u, v), hefeaf'ter referréd tot.asf-th’e lépatial
frequehcy or Fourier domaiﬁ._ The axés‘dim'en‘si‘ons of the frequency |
domain have units of cycleé pe‘r‘unit‘l‘éng't‘ﬁ.» 'F(ii, v), thér’l_y,’ ié ‘the t.,wc;
dimensional Fourier 'transforr;ﬁ of'f(x;y) wi.th ries'pecéli: to tile Foufiér,

kernel exp {i(ux+vy)}. '

2.2 Opti.cal Implémen&mtion

In order to become familiar with the ,physical_applica,“-tior’ls‘, and
to percéive the significan¢¢ of the a‘boxv,r‘ev tWo dir’xiénsional tfans‘f’oi‘m,
a brie}f review of optical‘data 'proc‘eséiﬁg‘ schemes wiyll‘ bvé presen't.ed.
Most optical pr»océ‘ssing systeifns are linea‘rlyanalyzed invlight‘ inten-
sity, or amplitude and'phasé. k'depending' on"'whet‘h»é‘r the" §ptica1
elements are illuminated with incoherent or coherent optical ra.dia-
tion, respectively. Th‘e case of coherent illumination’is of particular
interest. The concepts of coherent 6ptica1: systems and spatial fre-
quencies can be explained 'with(‘re‘ference to figure 2-1, A transpar-
' ency with transmittance f(x,y) is illuminated by'a c‘ohere"nt, col]‘.im’-
ated light beam so that eh‘e electric fiéld "arnpli,t\llde’of the light at the
input plane is ptop-ortional to f(x,y). The spherical -Iéns fir'Oduces an
- image of the transpa,rericy in the frequency élane. The‘light electric
field émplitude, F{u',v'), in the fx"eqv‘uenc.:y plane, as d‘etér‘m’i.ned by

the Kirchhbff integral of diffraction theory, is given by the Fourier
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transform relation

db

Fu',v') = ff ﬁ_(X.Y) exp {gﬁl— (u’:x%%r’y)} dxdy . (22)
ca S E

where X is the wavelength of light illurhin,ating,the trans;yaarency‘a;‘nd
f is the focal length of the lens [ 4, pg. 3797. This relation can ybe»

written as

db o
Flu,v) = H f(x,y) exp {i(uxtvy)} dxdy (2.3)
. 2mu' 2ny' ' PR | co
where u = X and v = T3F are called the spatial frequencies in

thé, Fourier transform frequency élar;e. A second ‘spheric‘al iens, a's

shown in figure"Z—l, performs a secénd Fourier‘transfc’o‘rm to return
to the space domain. The image is rotated 180.Q bébaﬁse each spher-

ical lens introduces a positive two dimensional kern‘vél. This is

‘ mathenﬁaﬁically expressed as
gz{Jz{f(x9Y)}} = f('?"Y) ‘ (2.4)

where 5‘2 implies a two dimensional Fourier transform.
In optical data processing systems the frequency content of a
two dimensional signal, f(x,y), may be modified by placing a trans-

parency, H(u,v), in the frequency plane of the function. The Houtput,
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O’(—x,—y), of a second spherical lens, and therefore second Fourier

transform, can be expressed as
J-x,-y) = F{F(u,v)H{u, )] (2. 5)

This physical system can be mathematically modeled by a two dimen-
sional linear system analysis as illustrated in figure 2-2 where h(x,y)
is the impulse response of the filter and is equal to the Fourier trans-
form of H{u, v).

For a completely general two dimensional linear processing
system, both complex (real and imaginary) inputs and outputs must
be readily processable. In fact, only under special circumstances
will the output of a Fourier transformation be entirely real. Unfor-
tunately, the light sensing tranéd;lcers employed in optical data pro-
cessing systems are only sensitive to energy or intensity rather than
phase and amplitude. Consequently, it is difficult to implement and
detect complex functions optically, although some methods to exist
[57. An alternative to optical processing is found by incorporating
the use of a digital computer for completely general two dimensional

information processing.

2.3 Digital Fourier Transforms
A two dimensional digital Fourier transform may be repre-

sented by the equation
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N-IN-1 2
Flu,v) = N LT f(x,y) exp {-—ﬁ-— (ux+vy)} (2. 6)

x,y=0

The inversion formula associated with equation (2.6) is

N-1N-1 - |
fe,y) = x T3 Flav) exp {- 5 (axtvy)} @.7)
u, v=0 .

For ease of programming, the inversion relation is not used. Instead
the positive kerneled transform will always be employed, thereby
in.troducing rotated retransformed images.

| As with the continuous case, equation (2.1), f(x,v) is a two
dimensional spatial function and F(u,v) is its Fourier transform.
However, the functions f(x,y) and F(u, v) have, of necéssity, been‘
quantized in the space and frequency domains, respectively. The
indices x, y, u, Vv, tgke on integer values running from zero to N-1.
Also, equation (2.6) represents a finite transformation. The discrete
two dimensional transform can be expressed in the form of

N, N
>-15-1

2mi |
Flu,v) = & I fx,y) expy{ — (uxtvy) (2.8)
x,y=-N/2 { N }

with the inversion formula

;—q-l-zl-\-]-l
f(x,y) = —1-2 T % Flu,v) exp {-E%i(uxwy)} 2. 9)

N™ u,v=-N/2
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However, to maintain continuity, equation (2. 6) will be adhered to.
An initial surfrey of digital Fourier transforming techniques
has indicated that until very recently only brute force methods were
available for producing the transformation [6]. For instance, if it
is desired to compute the one diménsional finite Fourier transform
of a function f(x) sampled at N points, then the finite Fourier trans~

form is given by

Flu) = —— Nz-l £(x) exp{zniux (2.10)
VN x=0 N

Computation of F(u) by conventional techniques requires N2 complex
additions and multiplications. Computation of F{u, v) in equation

2. 6)v by the brt;.te force method requires N4 complex additions and
multiplications. To evaluate a pictﬁre of 1000 by 1000 elements
requires 1012 complex additions and multiplications.

In 1965 Cooley and Tukey developed an algorithm which reduced
the number of complex additions and multiplications in the one dimen-
sional case to N lg N each [ 7] 1. The algorithm requires N to be a
highly composite number and is generally taken to be equal to 2" (a

readily adaptable parameter to digital computations).

lg represents the logarithm to the base two.
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2.4 One Dimensional High Speed Fourier Transform Algorithm
Ifx developing the experimental capability needed for Fourier
coding research, a one dimensional Fourier transform algorithm was
developed. The algorithm described here utilizes a modification of
the Cooley-Tukey approach and requires N lg N complex additions
and only (?)[ Lg (N)—Z] +1 complex multiplications for the one
dimensional example [ 8]. This savings is significant when it is
realized that a complex multiplication includes two real multiplica-
tions and four real additions. Since most computers have a longer
multiply than add time, the computation period is greatly reduced.
The reduction of complex multiplication operations can be achieved
by- evaluating spectral components in a specified order and using the

fact that

exp{%\]uk} = -exp{ENE-l—<k+-lé\-]>} (2.11)

The algorithm caﬁ be explained by letting f(x) be a one-dimen-
sional complex function which has been sampled and stored in N = 2"
locations and defining F(u) to be the spectral domain representation
of the Fourier transform of f{x) given by the equation

N-1

2
Flu) = $ f(x)exp {—%i xu } 2.12)
x=0 ’
‘v - 1
to within a normalizing constant —— .

N
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Now, expressing x and u in binary form,

X = xn_lxn_z...xlxo; xje(O,l) (2.13)

un_lu‘n_z...uluo; uje(O,l) : (2.14)

and taking advantage of the integer periodic qualities of the complex

exponential function, F(u) can be written as [ 9]

11 1 1
F(un_l,...,uo) =XZ ;L: ...x b3 }Z{ zof(xn EERRFL P _1 no? PIPO
0°71 " ""n-2""n-1
(2.15)
where
= ex (2’”11 u,0,...,0 |x, ) (2.16)
. p n- 1_ 30 0 0y 0 " e 0y ] j) .

Now upon summing over the Xj’ starting with the most significant bit,
X 1 it is evident that the sum of equation (2.12) is made in a speci-
fic order. Performing the computation in this order allows for the
storage of calculations so that no identical computation need be
repeated.

Note that for each sum over xj, the exponential, Pj’ can only
take on specific values as a function of the particular spectral point,

u, being evaluated. In fact, as more and more x, are summed

(approaching the least significant bit of the binary representation of
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x) it is evident that the exponential, Pj’ takes on values defined by the
shifting of the biné,ry representation of the spectral point, u. For
example‘, if the spectral point 001 were being evaluated, Pj would

take on values defined by

[ = exp [ 2ni (100)x, ] Pj = exp [ 2mi (OlO)x ] and

. = exp[-z—g—);(OOl)x ] .

For convenience, Ck = exp is defined and a table is formed in
which Pj are defined for each step in the computation and for each
spectral point. In constructing such a table, it is advantageous to
list the spectl;'al points as increasing binary nurnbers’ with the most
significant bit on the right., In evaluating a particular spectral point,
that point should be interpreted as its binary representation with the
most significant bit on the left. The table for n= 4 is given in
figure 2-3.

In evaluating spectral componénts as they are listed in the table,
it is found that after evaluating point u = 0 and retaining all inter-

mediate sums in their storage locations, the evaluation of pointu = 8

requires only a single subtaction. This is because C =.C N
G+3)

and from the table, C8 = -C0 = -1, To evaluate spectral pointu = 4

it is only necessary to back up two storage locations and perform a
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Spectral Point Exponential Factor Values Program

Number
3% %1% P | B | B P, BN

— o —
0Jooo0o0 1 1 1 1 o
8l 1000 1 1 1 Cq ]
4]lo100 1 1 Cq @ 2
121100 1 1 Cq c,, )
2l o010 1 Cg @ @ 3
101010 1 c, |c, <, .
6] 0110 1 Cq Clz @ 5>
1411110 1 cg | cy, c,, .
110001 Cq @ @ @ 4
9] 1001 Cq c, c, c, )
5101 01 C8 C4 ~C10 @ 2
13 1101 C8 C4 ClO Cl3 1
3] 0011 CS ch @ @ 3
1111011 Cq c, | ¢, . .

1

71011 Cq ¢, | ¢ »
1501111 cg | ¢, | cp Ce )

Figure 2-3, -~-Spectral Point Evaluation for N = 16
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subtraction to obtain C8 in column P. , and then perform one multi-

1

in column P.. Note that this C, is circled.

plication to obtain C4 0 4

To evaluate spectral point u = 12 only a simple subtraction is neces-

saryas C, = -C

4 12° Contintiing in this manner it is seen that all

-C
G+2)

these pairs is encountered, a simple subtraction is in order. The

columns contain pairs of C. = and that whenever one of

circled constants are the locations in the algorithm in which a multi-
plication must take place. The number of actual multiplications that
will be required for each circled constant equals two raised to the
index of the column in which the circled constant appears. Thus, A

~ from the table, the total number of multiplications required is equal
to .(7)20 + (3)21+ (1)22 = 17 complex mulfiplications. In general, thé

number of complex multiplications is equal to

n
w Rtk - -125 (-2) + 1 2.17)

k=2
where N = Zn

As an example, Fourier transforming a function with 1024 points
requires 4097 complex multiplications as compared to N 1g N =
10,240 complex multiplications, With such an algorithm the number
of exponential constants, Cj’ that must be used is (N/2) - 1. The

number of storage locations for the entire transformation is N initial



22

data points, N spectral data points, and N-2 temporary data points.
Implementatibn of the algorithm is best described with refer-
ence to figure 2-4. In designing the computer program to implement
the one-dimensional algorithm, additional computation may be saved
if the input is known to be real. Such a restriction on the input mani-
‘fests’ itself as a symmetric conjugate property of the Fourier trans-
form, and consequently only I—\Iz— + 1 spectral data points need be cal-
culated, However, the program must be able to accept complex
inputs whenever the case arises. Figure 2-4 shows the command
and controi for the program. The spectral point is calculated by
incrementing a binary counter and interpréting the most significant
bit as the least. The program numbers are obtained by an inverse
sieving operation as in the example of figure 2-3, The coefficient
addresses are computed when a rnultiplic.ation becomes necessary.
. Finally, a branch to a specific program takes place. Program PNO
will always be the first program. It sequentially adds the first half
of the data input to the second half, storing the results in :ZN storage
locations. This operation is repeated until the final sum is stored in
one storage location. This result is the average value of the original
function, f(x). Program PNl simply backs up a storage location and
performs a subtraction resulting in the value for the spectral point

found by adding —1; to the prior spectral point. This can be verified
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from ﬁgure 2-3 where program PNl always evaluates the speétra.l
point %I =8 greatei‘ than the previous spectral point. Notice that
prografn PN1 always evaluates spectfal points greater than or equal
to —ZN and consequently need not be implemented, except once, for
real inputs, All other programs back up a respective pumber of

levels of storage locations, implement a series of subtractions and

multiplications, and branch to the next lower program number.

2.5 Experimental Results

The one dimensional Fourier transform algorithm described
in the previous section has been incorporated into a two dimensional
Fourier transforming program. The operation and data flow of this
program is described in the appendix. EXperirnental results utilizing
the two dimensional program are encouraging, and are ‘presented’
below.

A two dimensional real function whose Fourier transform is
mathematically knbwn is the first scene. The simplest such function

is probably a square of uniform amplitude. The Fourier transform

sin au
au

of the square is a ( )( SH;:V) pattern in the frequency
plane where a is an appropriate constant. If the sqlia.re is not
centered in the space domain, the frequency domain will have a

phase shift associated with the pattern. In addition, as mentioned

before, all optical or light sensing devices are sensitive only to
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intensities and not amplitudes and phases, Therefore visual repre-
sentation of the Fourier domain will contain only magnitude informa-
tion with a loss of phase information. Two visual display techniques
are employed. The first technique displays the square root of the
sum of the squares of the real and imaginary components of each
frequency sample. The second technique displays the logarithm of
the magnitude of the Fourier transform., This produces a nonlinear
representation of the Fourier samples but allows viewing of low
magnitude information that otherwise would remain undetected.

Since neither the magnitude nor logarithm of the magnitude display
techniques alter the physical positioning of the Fourier transform
information, these display methods have become exceedingly useful
tools in studying the information distribution in the frequency domain.
Figure 2-5 contains the square test function and its Fourier
display. Figure 2-5a displays the square of uniform amplitude.
Figure 2-5b displays the logarithm of the magnitude of the Fouriér
transform of the square in figure 2-5a. The shape of the logarithmic
display is a |[ (sin au)/au]l (sin av)/av]| function. Notice that there
is high frequency information far out on the axes of the frequency
plane but very little off axis. This is intuitively justified as there
are no diagonal brightness transitions in the original square. Figure

2-5c is a two level block letter scene which has been Fourier trans-

formed. The logarithm of the magnitude of the Fourier transform is



a) Square b) Logarithm of the Magnitude of
the Fourier Transform of the

Square

c¢) Block Letters "USC" d) Logarithm of the Magnitude of
the Fourier Transform of the
Block Letters

Figure 2-5. -- Two Test Scenes
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displayed in figure 2-5d.

It is desirable to obtain the original function from a double
implementation of the two dimensional Fourier transform program.
Such results are afforded by figures 2-6, 2-7, and 2-8. Figure 2-6
is a typical moon surface with a portion of the Surveyor footpad in
the upper right corner. This scene has been Fourier transformed
and the magnitude and the logarithm of the magnitude of the Fourier
transform are displayed in figure 2-6b and 2-6c, respectively. The
Fourier transform of the original scene has been introduced, in its
complex form, into the two dimensional transform program; and a
second Fourier transform has been taken. The result of this trans-
formation has been rotated 180° and is displayed in figure 2-6d.
Figures 2-7 and 2-8 are two different moon scenes which have been
double Fourier transformed. There is no noticeable degradation in

either of the retransformations in these figures.

2.6 Data Processing Errors
The subject of digital Fourier transforming of images would
not be complete without a discussion of the limitations due to the
discrete and finite nature of the computations. The computer calcu-
lations have been carried out in simple single precision integer

arithmetic. This means that all results are integer valued and
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a) Surveyor Footpad b) Magnitude of the Fourier
Transform

c) Logarithm of the Magnitude of the d) Double Fourier Transform
Fourier Transform

Figure 2-6. -- Fourier Transform of Footpad
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a) Surveyor Boom b) Magnitude of the Fourier
Transform

c) Logarithm of the Magnitude of d) Double Fourier Transform
the Fourier Transform

Figure 2-7. -- Fourier Transform of Boom
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a) Surveyor Box b) Magnitude of the Fourier
Transform

c) Logarithm of the Magnitude of d) Double Fourier Transform
the Fourier Transform

Figure 2-8. -- Fourier Transform of Box
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bounded by *+ 217”, the capacity of an eighteen bit computer register.

A probiem that always arises in the use of a finite two dimen-
sional Fourier transform algorithm is the truncation error, This
type of error occurs when the normalization constant, 1/N, is uSed"
in transforming from the spatial to Fourier or Fourier to spatial"
domains. A partial solution to this problem is to normalize by a
constant only as large as is needed to prevent overflow. Thus, the
Fourier transform computation philosophy is to make maximum use
of register length until the last possible moment when normalization
is necessary for display purposes.

In addition to truncation errors, a certain amount of high fre-
quency error.is introduced due to the fact that only a finite number
of Fourier coefficients are calculated. These high frequency errors,
due to truncation of the algorithm, have been found to be quite insig-
nificant.

An additional pointuconcerning the nature of the finite Fourier
transformation must be made. This relates to the fact that the
Fourier series approximation is valid only if the scene is periodic
with periodicity equal to the window of observation. This fact must
be taken into consideration when viewing the energy distributions
in the Fourier domain. It is possible, when the data on two parallel

edges of the window of observation are quite dissimilar, to influence
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the energy m the frequency domain along the perpendicﬁlar freélue’ncy
axes. The periodic assumptionvimplieé'that pa‘rallei edgés of a scene
are adjacent. Consequently, certéin on axis information in the
f‘ourier dbmain. could be due to brightness traﬁsitions on'.’opposite'
but periodically adjac’ent edges in the spatial domaiﬁ. The effect of
this phenomena can be reduced by smobthing -'th.e transitions at the
edges of the observation window. Sué_h techniq.uqs fésult in thé
dévelopment of special windows of §bservation. ' Difféfent windows
of obseyvation, then, could result in aifferben"t von‘baxi’sv enei:gies iﬁ the
Fourier domain. The effect ofﬁ the s‘quar.ejbina‘ry observaLtidn' window
usAe‘d in this r‘es earch is relativeiy insignificant a:nd wili not be devel-
oped’further. | |

Th‘e’above discussions are meant to imply tha-it the results of
the finite algorithm have been well enough beﬁa,ved to glean m eaning-
ful experimental results by operations on thé Fouiier domain df
images. H’owever, thé first step that should be £aken in developing
a realistic developmental model for a Fourier éoding scherhe would
_ be a greater resolution algorithm and ’double precision arithmetic.
In fact, floating point calculations should be' considered for a more.

exact transforming program,



CHAPTER 3
PROPERTIES OF THE FREQUENCY DOMAIN

Certain deterministic properties caﬁ be derived for the fre-
quency domain due to restrictions iﬁ thé spa.‘ce domain. Tﬁese
properties, which will be used in developing Fourier coding tech- .
niques in the frequency domain, are symmetry, dynamic range,

entropy, and nonnegative-definiteness.

3.1 Symmetfy
The function f(x,y) describes the intensity of samples in the

spatial domain of an image. Intensities are nonnegative and real;
and therefore, f(x,y‘) is also nonnegative and real. Making use of
this restriction on f(x,y), a property of conjugate symmetry) can be
demonstrated for the frequency domain. Let the Fourier transform
of f(x,y) be expressed as
N_'lN'l 2m 2m

by .f(x,y){cos_—— (ux+vy) + i sin——‘(ux+vy)}v (3.1)
x,y=0 N N

F(u,v) = li\]

The Fourier transform, F(u, v), can then be divided into real and

imaginary components

- 33
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F(a,v) = FR(’u.vyH:rI(u.v) R ©.2)

Since f(x,‘y) is real

-, N-IN-L
Folu,v) = N x):’y_zo f(x,y){cos ) (ux+vy) } (3.3)
and
o | N- IN-1 | | S
Fil,v) = § xzy‘zo £(x, y) { sin &7 (ux+vy)} (3.4)

The cosine is even in u and v, and the sine is odd in u and v. Hence,

 the following relationships exist

FR(u.V)’:FR(-u.;V)’ o , | (3.3)
and ’

FI(u’ V) = -FI(-u, -V‘) | o R o | ‘ (3.6)
Consequently

F(u,v) = F¥(-u,-v) B

where * implies the ’complex conjugaﬁé. Referring to figur:e. 3-1,

thls symmetric conJugate relétwnsh1p 1mp11es that quadrants @
~and @ are determ1n1st1ca11y dependent as are quadrants @ and
@ . Thus any two mdependent quadrants are sufftcxent fozj comp11ete',
.knowledge of the entire frequency doma,i‘n.’ A &iéua’l example of this
symmetry ?rqperty is afforded by figure 3-2 which displ‘ab.fs the -

logarithm of the magnitude of the Fourier transforms of various



Figure 3-1. --Frequency Domain Quadrants
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a) Footpad b) Block Letters "USC"

c) Surveyor Box d) Surveyor Boom

Figure 3-2. -- Logarithm of the Magnitude of the Fourier
Transforms of Test Scenes
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test scenes. It is evident that diagonally opposite quadrants are
identical due to displaying magnitude rather than phase and amplitude
information.

It is possible to demonstrate that knowledge of two adjacent,
and therefore, independent quadrants is sufficient for total recon-
struction of the original image by z;n alternate proof. The proof is
based upon the a?plication of a Hilbert or quadrature filter to two
dimensional functions. Let -a two dirﬁensional filter be constructed
such that there is filtering pbwer in only one dimension with impulse

response given by

hx,y) = = s(y) (5.8)

where 8(y) is the Dirac delta function. The transfer function of the

filter is given by

-i u>0
i u<0

H(u,v) = 32 {hix,y)} = (3. 9)

This transfer function represents a one dimensional quadrature filter
or Hilbert transform operator in the x dimension. Referring to
figure 3-3, the output of the filter, f(x,y), can be obtained from

linear systems analysis as

fx,y) = fxy) ® hix,y) (3.10)

where @ implies a two dimensional convolution. The Fourier
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transférm of the output, i;‘(u,v), is giv;en by

Fu,v) = Flo,v) H{u,v) - - = (3.11)
Now a fuhcti‘von z.(x’,y) is formed such that

Z{x,y) = flx,y) +i i) (3.12)
is fhe analytic signal associated ;Vith f(x,y). ‘The Fourier transform,
Z(ﬁ, v), of z(x,y& is gix;efx by

Z(a,v) = Flu,v) +i F(u,v) | . (3.13)
And hence, from ‘eqr’uation (3 11)

Z(u,v) = F(u,v) +i F(u,v) H(u,v) = (3.14)
Finally, from equation‘ (3; 9)

-~ Z(u,v) = 2 F(u,v) U(u) - (3.15)

where “I.J(-u);i‘s a step fﬁnctioh at the v éxis in the ‘u direCtion. The
func‘tion, zv(x,y),‘ can fﬂus be obtained‘\‘with the ‘knowledge of only

half of the frequency domain. The only restriction necessarir to
recover the original function, f(x,y), from z(x,y) is that f(x,y) be
real. Then a simple ex.traction of the réal field from the complex
z(x,y) fﬁnc;.tion results in ghe desiréd output; The above analysis was

carried out for an arbitrary dimension x and is valid for the y dimen-
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sion as well,
| Both the Vsymfnetri'c’conjug-ate and‘I-VI-ilib'ert apprbach I’ead‘ it’o the

same conclusion. Any two adjacent q’uadfahts 1n the z-f“r‘equvénc'y_ |
dofnain are’sufficient to reconstruct the original fﬁnﬁtion wheﬁ itis
real. In éddition, the reconstructiofx can‘beA 'irripleménted" in éither '
of two modes: a two dimensional Foui'ier ’tran’sfvormv of h_va?lf'a"plane
can be taken and ’the desired function extracted from the r’éal part of
the transform, or the entire fr‘equency domain can be regenera’ted -
'using the symmetric conjugate property and then retransfo:rhed to
obtain the original, The only difference between the two metl';(;ds. is »
a computational one due to the finite computer implementation, to be
d13cgssed in chapter 8,

The conclusion from the above analyses indicates thét it is
only necessary to transmit half the number of sample points in the
frequency domain as in the spatial doma'm. This does not result i‘n
any type of data reduction. If the sPatié.l dbmain has Nz' real sam-
ples, the frequency domain will have NZ/Z ‘complex s;mples; Thus,
there is an equal number bf units of data to be transmitted in both

domains.

3.2 Dynamic Range
An important subject not yet explicitly discussed is the dynamic

range of values in the Fourier domain. It is of interest to introduce
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an upper bound, A, 6n thé function f(x,y). Thérefore the range of .
varlu‘es and consequently the dyné,mic range that a f.unc tion can achieve
in the space do&xain is from zero l,;o A. This aséumption of a B&und
on f(x,y;), aithough mathematiéall’y valid, also has vphysical signifi-‘
cance. For moéé light sensing.devices the.dylliamic range is a real
phyéiéal llirtvaitationﬂan.d not éri aséumption for ease in calculations.
Referring .to equation (3.1), the raﬁge of \}alues allowed at the origin
in the fr:equencjr domain’ is seen to be zero to AN.’ For the case when
f(x,&) is coﬁstént at vé;'lue A the upper"bounc.l is reached, and wh’en
f(x,y) is identically zero, the lower bound is achieved. The Boﬁndé'
on all fre‘quevnc’ies other than the origin are + AN/2. These bounds
are bael:ied -voh the condition that f(x,y) take oﬁ the value A either in
| p>haseb orv out of p’haseAand take on the value zero otherwisAe for any
given two dimensional trigonometrvicrfunction. The‘uppef bound is
obtained from the in phase case and the lower bound, frbml the ouf of
phase case.

The dynamic range of F(u, v) is dependent upon the normaliza-
tion cons»tant. N is adopted as ;he_pormalizing constant in equation
(;%. 1")‘in order that the same equation becomes the definition of the
Fbur;ler invers;‘.on operation with a 180° ro_tétion. In this way trans-
formations from one domain to the oth-er can be implemented with
the same normalizatiqn cons taqt. Actually, for computationa} rea-

sons, this normalization constant is selected so that maximum use
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of the computer registers is made, This teéhnique wé.s discuséed in .
chapier 2. The em.phatic point is ’thiat the frequencv;r domain must be | :
capable of handling far greater magnitude number‘s‘ than the spatial ‘,
domain, This demonstrates why certain optical data précgééing
systems have severe lifnitations.' The dynamic ,Ara.nge' ‘n'écessaryvr for
good ex?erimental frequency domain operationé .i:s too ’1a‘.r’ge' .for“ .most‘ '
physicallsys tems to handle. However, there afe__some_ ﬁew photo-
graphic holograi)hic techni,ques that approach thé rgquired dynamic
ranges of the Fourier frequency domaiﬁ, but these will not be dis-
cussed here [ 107.

While the dynamic rangeiof possible va;lueé is ektfemely_‘_la,’;-gke
in the Fourier domain, it is interes,tingito’« n'otev tﬁat few' ppinﬁs can
actually take on large values. As is l;no‘Wﬁ frorﬁ Pa‘rsev_aly"s relation-
ship, the total energies ‘i‘n the space and frequency domain must be

equal [ 11, pg. 27].

N-1N-1 N-1N-1

£ % [ty = £ % |Fluv)l (3.16)

x,y=0 u, v=0

Consequently, only a few spe¢tra1 poinfs can be large -because of the
energy bound in the frequency domain. In other word‘s, a few large
valued spectral components will consume most of'ti;e tofal energy of
the original spatial function. It is this fact‘,' the rediystribtvition of

energy in the frequency domain, that allows a large amount of
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bandwidth reduction in transmitting most of the original scene.

As an example of the’dynamic range often obtained in the fre-
quency domain, consider the results demonstrated by figure 3-4,
Figures 3-4a and 3-4c are the magnitudes of the Fourier transforms
of a square and a circle, respectively. Figures 3-4b and 3-4d are
three dimensional displays of the two magnitude transforms. The

analytic solutions to the magnitude squared of the Fourier transform

. 2 .
sin au N ( sin av ™
]
AN

of a square and a circle are known to be ( ) and
au av
Jy kew) 2
(2 e respectively. Here Jl(-) is a first order Bessel func-

tion and w is a radial spatial frequency. The dynamic range for
the zeroth to first order, on axis lobe for these two functions is about
21:1 and 57:1., Similarly, the ratio of the zeroth to third order, on
axis lobe is 120:1 and 625:1, respectively. These lobes are barely
visible in the perspective displays of figure 3-4 but are present in

the computer as are much higher order lobes. These examples
emphasize the care which must be taken when drawing conclusions

from displays of the frequency domain.

3.3 Entropy
To analyze the theoretical efficiency of transmitting the
Fourier transform of a scene rather than the scene itself, it is
necessary to compare the entropy of the spatial and Fourier domain

information., Towards this end it would be expedient to know that it
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is valid to assume that the entropy of a scéne and the Fourier trans-
form of the scene is idenfical. The proof thai; follows demonstrétes
the invariant nature of a Fourier scene and space scene as informa-
tion sources of a communication system [ 127. Iﬁ. fact, the analysis
holds for any two dimensional complex bipolar function and thus is
applicable to certain types of Fourier holography where complex
electromagnetic optical fields‘ are stored in two dimensions.
Introducing subscripted notation causes the Fourier definition

to become

j N-IN-1 2mi
R e
Fu,v z % x’_)rexp N (ux+vy) (3.17)
x,y=0 :

Now the two dimensional functions are complex samples

| {f =a +ib }where x,y range over the integers {0,1,....N-1}.
- Ux,y ' x,v X,y ‘

.

Also JL F =c +id }is a sequence of complex samples; and u
w,v u,v u, Vv

and v range over the same integer'index set. Now consider the f

?

samples to be complex variables of a two dimensional space domain

with joint probability density and distribution functions

b b ’.u'.’b

pf(a0,0’...."a'}{,y,....,aN_l’N-l’ O’O’.on-’ X,Y N~1’N—1)

and

P (a

f "..C.’a’ ,.0..’a b b ,co-c,b )

0,0 X,y N-1,N-170,0"""" "’ "x,y N-1,N-1
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respectively. Similarly, let the Fu v samples be complex random
'Y |

variables of a two dimensional frequency domain With joint probability

density and distribution functions

pF_(CO,O’ oo ,c’:ku,v, soss ’_C;N—I,N-l’dro,o’ cese ’du',v’.' . . ’dN 1,N- 1)
and
. PF(C'O, o ’Cu,v’ e ’CN-I,N—I’dO,O" .o ..,du;v, oo ,dN 1,N- 1)
respectively.
The entropy of the space domain scene is given by
H(f) = -TP, log Pf | - o (3.18)
and the entropy of the frequency domain scene by
H(F) = -Z Py, log P, D ; (3.19)

The summations are over all possible combinations of distributions
in the space and frequency domains, respectively. Reza has shown

that the entropies of the two domains are related by

F ,-ooo,F
HE) =H(F) - E |log [T| 7= N-1,N-1 3. 20)
o,ogo.oo, NlNl

where J is the Jacobian of the transformation between the» two spaces
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and E[+] is an ensemble average [ 13, pg. 287). The Jacobian

r elates the density functions by the following:

pp = b/ | 7] (3.21)

- The proble.m haé now been reduced to proving that the Jacobian
of the transformation is unity, There are two ways to proceed at
this point. An abstract analysis approach allows verification that
the Jacobian' i‘s unity bsr ﬁoticing that the transformation is iifxear and
proving that norms and hence inner products are preserved.1 The
second approach, presented below, shows that ‘the Jacobian is unity

from matrix theory. The Jacobian is given by

BFu v |
R R (3.22)
X,V

where u,v,x,y range over I, and the dimensions of the Jacobian are

2 2
N by N . Let the matrix representation of J be equal to T. Then

I o,V

1 Fu v 2mi
= = —_—2 = . + R
T= | =3 exp{ == (ux vy)} (3.23)
*¥ ‘ } N-1,v
0,y N-1,y

with indexing as illustrated. Note that the complex conjugate of T is

! See Hewitt and Stromberg, section 16 reference [1417.
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with the same indexing as for T. The transpose of the conjugate is

~ given by
e |
PRI Y {--—--— (ux )1] t ©y (3.25)
| ! N-L,y

0,v : ' N-1,wv

with indexing reversed. T and T ¥ can be multiplied together to

form

T*tT _ _Ii_é_ l;:xp {_ Eig—’: (ux+v1)’}]: ;’1’ . [i’ip {“‘2%”}‘ ~(ﬂxﬁ¥§ﬁ] : ;—Z

v ~ N-lLv o,y N-l,y
| (3.26)
) L . th . th
The resulting matrix, with the pq  row times the rs~ column
 illustrated, is givén by
T T=— 2 Z exp{--——-—(px+qy)} exp{-——-—- (rx+sv)} (3.27)
©|N-1 | N-1 ]
% 1
7 < L5 exp { AT e p)} B exp {——-—v(s q)} (3.28)
N™ | x=0

Finally
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% ‘ 2 ‘ :
TVr = S| N (3.29)
N B - :
by the .orthdgo‘na,lity" of the Fourier kernel except at r=p and s=q.
This demonstrates that T is’"a unitary matrix [ 15, pg. 25]. The
~ determinant of a unitary matrix is unity; and therefore, the absolute

value of the Jacobian of the transformation is unity,
T =|T] =1 (3.30)

Thus the joint density functions are equal, Pp = Pgs and the entropies

of the two spaces are now related by
H(f) = H(F) - E[log | 7|7 = H(F) (3.31)

Hence the frequency domain contains the same amoun£ of infor-
rhation as the space domain. This result should not be coﬁstrued as
a solution to the coding problem in the frequency domain. Thé
result merely states that a channel rate of x bits per picture should
be achieved by transmittiﬁg either in the space of frequency domain.
In generai, finding a coding scheme in the frequency domain as
efficient as one in the space domain is not an easy task. This fopic

will be discussed more fully in chapter 5.
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3.4 Nonnegative-Definite
A final deterfninistic property of the frequency domain to be
discussed is the fact 'that the Fourier transform of a real nonnegative
function is nonnegative-definite [ 11, pg. 225]. In two dimensional

notation this property can be expressed as

™MB
™M B8
®
2
o

» V- v) >0 (3.32)

ug
~
i
[

where the a's are any complex constants, and the inequality must

holds for any value of n,u ,u ,v ,v.. Proof of the necessity of the
m k' m 'k .

above condition can be demonstrated by the following ihequality

[e-]

o< [[1 =

a_ exp {i(umxwmy)}|2 f(ﬁ,y) dxdy (3.33)
m=1

-0

Expanding the square magnitude and interchanging the order of inte~-

gration and summation yields

nn o
0< =% a ak “ £(x,y) exp {i[,x(um-uk) +y(vm-vk)]}dxdy

m
m, k=1 e | (3.34)
Finally
n n . .
0< X% a a, F(u - WV - vk) (3.35)
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Proof of the sufficiency of such a condition is given by Bochner [ 16,
) vpgr.‘zo'z',].

| While the nonnegative-definite cAi-iterion ‘is valid; testiﬁg a
'functi"o‘n'to de'term,ine if it belongs to the class of nohnegative-definite
functions is usually not facile. One result that the nonnegative-

definite property requires of the frequency domain is that
Fo(0,0) > |Fp(a,v) (3.36a)

CFR0,0 2 [ Fww ] (3. 36b)

This can be found by setting n=2 and using the values a.= 1 and -

1

a

=1,-1,i,-i for four different cases in equation (3.35), The énly
difference between nonnegativé-deﬁnite functions and Fpurier trans-
forms of arbitrary real fuﬁctions is the value at the oi‘igin of the
frequency plane. Consequently, nonnegative-definiteness will not

be pursued.



CHAPTER 4
IMAGE EVALUATION

A two dimensional matched filter offers a natural tool for the
devél‘opment of a quantitative image ev'éluation technique. Such a
technique is developed in this chapter. In addition, two statistical
image evaluation procedures are implemented for the purpose of
comparison.

The advantage of having quantitative image evaluation tech-
niques is that they take the burden of decision off the subjec4tive
evaluétions of the human eye, With quantitative techniques, dyiffer-‘
ent expérirriental methods can be objectivélf compared andv image
processing’ systems can be quantitatix}ely optirhized. The majbr |
limitation of such evaluation procedures is that usually the ultimatt;
receiver of an image processing system is the human eye, and it is
difficult to develop quantitative models for such a receiver. ,Iﬁ |
particular, the eye is more senéitive to high frequency ''salt and
pepper' and spatially correlated or patterned noise than it is to low
frequency slowly varying and random spatial noise patterns (1], 1f
the saﬁe noise energy exists in both cases and if the quantitative

image evaluation model is a function of total noise energy, then the
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quantitative results are not going to agree with the most pleasing
results as far as the eye is concerned. However, under certain
circumstances correlations can be made with the results of tﬁe
nra’a'l‘:ched filter technique and subjective human viewing, Both the
' "ma(:ched filter and statistical image evaluation procedures are

'described below.

4,1 Statistical Evaluation

There are an unlimited number of statistical funétions that
might be used as a quantitative measure of experimental results.
For instance the difference in processed and original scenes can be
- formed and measurements made on this 'noise difference', If all
errors introduced by processing, transmitting, and reconétruc:ting
é.re considered to be additive noise, then the ”noise‘differenca“v
scene can be measured for statistical parameters.' If high frequency
noise is more undesirable than low frequency noise, a higher order
statistical moment of the noise should be investigated. This type of
statistic places more emphasis on larée noise samples and thus high
frequency noise on the original scene. In addition to measuring
moments of the noise, a histogram of nois'e samples fnightbbe inves-
tigated. In this case the shape of the histogram at higher values
. would be of interest as tﬁis would give the relative frequency of

occurence of large noise samples as versus small noise samples;
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and, consequently, high frequency versus low frequency noisé. For
a photometric image evaluation criterion where absolute values of
given picture elements are of interest, the higher order momént
statistic is probably more valuable than a first order statistic. How-
ever for a photometric measurement criterion, and average over the
entire image of a higher order moment statistic is probably pf less
value than such an average would be for a total image evaluation
criterion.

The approach taken in this chapter is to develop two statistical
pararheters to evaluate a total image; and consequently, an Aavera,gei
over the entire image plane will be taken. The first parameter
measured will be the average of the absolute value of the error at
each element in the ''noise difference' plane mentioned above. If
the pre-processed image is f(x,y) and the post-processed image is

g(x,y), then

1 N-1N-1 :
— T T |ilxy) - gyl (4.1)
N x=0y=0

will be referred to as the mean absolute error per element. The
second parameter measured will be the average of the square error
at each element in the noise plane minus thé square of the mean
absolute error per element. This will be referred to as the variance

absolute error per element. Mathematically, this expression is
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;| N-1N-1 > 1 [ N-IN-1 2
=q = T Uey)lebon]-=| T T |ixy)-gk,y)l (4.2)
N | x=0 y=0 ' N | x=0y=0 v

Both these measurements have been performed for test scenes in

section 4.3 of this chapter.

4.2 Two Dimensional Matched Filter

Another method that can be used to measure the quality of a
processed image involves the use of a two dimensional matched
- filter. The concept of the matched filter originally arose in the
field of communication engineering in problems of signal detectioﬁ
and evaluation. In the study of optimum filtering, thé matched filter
i)s’ derived to be the filter which maximizes the signal to noise ratio
over a given interval of observatidn [17, pg. 2397. The matched
filter is often used in pattern recognition experiments as the detect-
ing instrument for given patterns. Two dimensional matched filter-
ing has been performed optically with some success [ 5]. I’n two
~ dimensions, if the pattern of signal to be detected is f(x,y) with

Fourier transform F(u,v), then the matched filter is defined as

F¥(a, v)

v » where N(u,v) is the noise power spectrum in which the
N(u, v) .

signal is immersed. This spectrum can be defined as any unwanted
portion of a scene, If g(x,y) is the two dimensional plane from

which the signal, f(x,y)‘, is to be detected, then the output, J(x,y),
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of the matched filter is

11 P4, v) |
dlx,y) = IJ. G(u,v) -1—\]-(-1-1-’3-‘-,—)- exp {i(uxtvy)} dudv (4.3)
-1 -1

where the cell (-1, -I;I,I) is the entire picture. The true matched
filter will detect phase and amplitude information and, consequently,
is ‘position as well as shape sensitive. In other words, the matched
filter can detect the difference between rotationally sim?lar charac-
ters such as ""p'' and '""d" or "6'" and ''9" where the magnitu’de of the
transform of these types of signals is identi;al but their phases are
diffgrent. An experimental result will offer insight into the discus-
sion. Figure 4-1la shows the signal f(x,y), the letter 'd", w_hich is
the signal to be detected from the array o "p's' and ''d's" of figure
4-1b. A suboptimum matched f;llter was constructed as F*(u,v)‘
ignoring the noise spectrum of the "p's'\. Figure‘4-1c is the output
of the matched filter and indicates those points in the two dimensional
plane where the greatest correlation with the letter 'd'" exists. A
three dimensional display of the correlation peaks is shown in figure
4-1d. Two significant results are immediately obvious from this -
example. The position of the correlation péak indicates the position
of the detected signal, and the height of the correlation peak indicates
the degree of correlation of the detected signal with the pattern to be

recognized. It is this latter property, the degree of correlation,
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a) Signal to be Detected b) Array of Signals and Noise

c) Filter Output d) Perspective of Correlation
Peaks

Figure 4-1. -- Matched Filter Experiment
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that can be used as a measure of the processing, transmission, and
reconstruction noise on the original image.

If the matched filter is used as a measure of correlation of
processed to unprocessed images, then positional information is
unnecessary. This can be explained by interpreting the filter as
convolving the pre- and post-processed images by shifting one across
the other and measuring the correlation at each shift. When the two
images are synchronized in both the x and y dimension, the greatest
correlation will occur and this will be at the origin. Consequently,
the oufput of the matched filter, sampled at the origin, will indicate
the degree of correlation between the two inputs. The peak correla-
tion will occur when the filter matches an image with itself in the
absence of noise. Specifically, when (x,y) is the output of the

filter then

11
Mx,y) = \ Jx F(u, v)F*(u, v) exp {i(uxtvy)}dudv 4.4)

~I-I

and when the output of the filter is sampled at the origin then

I I
00,0) = | { |F(u, v)|? dudy (4. 5)
1-1

In other words, the best possible correlation occurs when the pre-

and post-processed images are identical, and is equal to the energy
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in the given image. The degree of correlation can then be normalized
to the total energy for fractional representation. The output of the

filter in the presence of noise is

ol

» 'P(u, V)G (u: V)
1 N(u, v) dudy

(4.6)

A digital counterpart to the two dimensional matched filter has been
implemented and some typical experimental results are presented

below.

4,3 Experimental Comparisons

Figure 4-2 contains four images and their respective statistical
and matched filtered results. The images are displayed in order of
decreasing visual pleasure. The degree of correlation determined
by the matched filter experiment decreases monotonically with
decreasing subjectively pleasing results and appears to agree with
the response of the eye. The statistical results displayed include
mean and variance absolute errors per element and are obtained by
subtracting the processed images from the original footpad scene.
The mean absolute error results indicate that the image of figure
4-2c is better than that of iigure 4-2b. This indication is not sub-
stantiated by the matched filtered results or by subjective viewing.

Also the variance absolute error per element measurement indicates
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a) Matched Filter Correlation : 1. 000 b) Matched Filter Correlation : 0.9703
Mean Absolute Error per Element : 3. 952 Mean Absolute Error per Element : 4.
Variance Absolute Error per Element : 5. 538 Variance Absolute Error per Element

5. 208

c) Matched Filter Correlation ; 0. 9558 d) Matched Filter Correlation : 0.9494
Mean Absolute Error per Element : 4. 005 Mean Absolute Error per Element : 4.
Variance Absolute Error per Element : 6,223 Variance Absolute Error per Element

6.550

Figure 4-2. -- Image Evaluation
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image 4-2b is superior to 4-2a which is a clear discrepancy with
subjective and matched filter results. Higher moment statistical
measurements could be taken but the problem with such a technique
lies in the fact that a few large noise errors can completely dominate
all other noise effects and consequently will produce an evaluation of
an image which is not based upon the entire image's domain of defini-
tion. This is exactly what has happened in figure 4-2a, where the
simple process of retransforming back to the spatial domain has
introduced a few large errors which have caused the variance mea-
surement to incorrectly evaluate that image. A similar experiment
has been performed on the Surveyor box and is presented in figure
4-3,

A word of caution is in order. The above results are not to be
construed as proof that the matched filter is the answer to all auto-
matic image evaluation problems., It can be used advantageously as
a quantitative measure for relative results between similar process-
ing techniques. In other words, the matched filter will discern
between varying degrees of the same processing technique. This is
exemplified by the earlier figures 4-2 and 4-3 where the narrower
and narrower low pass filters are used to obtain the varying images
of that figure. Similarly the matched filter can be used to evaluate
the results introduced by varying the number of quantum levels in a

given quantization scheme. The main problem with the matched
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a) Matched Filter Correlation : 1. 000
Mean Absolute Error per Element : 4, 704
Variance Absolute Error per Element : 34. 47

b) Matched Filter Correlation : 0.9633
Mean Absolute Error per Element : 5.

Variance Absolute Error per Element
20. 04

c) Matched Filter Correlation : 0. 9091
Mean Absolute Error per Element : 5. 619
Variance Absolute Error per Element : 22. 20

d) Matched Filter Correlation : 0. 8659
Mean Absolute Error per Element : 6.

Variance Absolute Error per Element
27.15

Figure 4-3. -- Image Evaluation
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filter is that it cannot tell if the image makes sense. Conseciuently,
it is possible to gét better matches with totally irrelevant ima',g,es
than with very poor but relevant ones.

It is difficult to draw a conclusion as to what techniques, if
- any, will offer an impartial image evaluation procedure. However,
it is the conclusion of the author that if bbth subjective and matched
filtered correlations can be used in parallel, subtle results, some-
times undetec’table by the eye, can often be quantitatively evaluated

successfully.



CHAPTER 5
FOURIER DOMAIN QUANTIZATION

In digital communication systems it is necessary to quantize
information before it can be coded for transmission purposes,
because a finite dictionary code requires a finite number of values |
for data input. Quantization introduces an error known as quantiza-
tion noise. This error can be analyzed from a statistical viewpoint,
and techniques are available for minimizing mean square quantization
error. Such error minimization procedures are contingent on the
selection of proper quantization levelé from the probability density
function of the signal to be quantized [ 18, pg. 6417. This chapter
presents a brief stochastic analysis which results in the experimental
implementation of a frequency adaptive quantization procedure.
Experimental results of the procedure are pr_esenfed, and an experi-
mental tolerance for the frequency adaptive quantization parameter

is demonstrated.

5.1 Stochastic Analysis
It is desirable to know as much as possible about the stochastic

behavior of samples in the Fourier domain in order to derive
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meaningful quantization rules for that domain. Ideally, this means
determining the dénsity function of each frequency sample in the
Foﬁrier domain. As an effort in this direction, a stochastic ﬁodel
is presented below.

Let §(x',y') be a continuous two dimensional wide sense station-
ary random process with a bounded and continuous power spectral
density, D(u,v), where u and v are real. It is desired to observe
!;he process over the two dimensional window, (-I,-I; I,I), and to
sample the process at N2 uniformly spaced points within the window
of observation. A new process, FN,I(u’V) depending én both the
window of observation and the sampling period within the window, is

formed according to the following

Fiy. V) = I%I-Nz“\'qzlqb > { (ux+vy)} (5.1)

X’Y

Investigation of the variance of FN I(u,v) yields the following result

in terms of a covariance function, p, on the process, 0.

1N'.lNl

0; {u,v) = — T % € Ep (n, TY{N-T) (TI TIN

2

- OSZT\I—TTI(uT'*'VT)
N,I N T1,T=0

(5.2)
where T and T are integer values representing the two dimensional

T
=1 and eT-‘- 2 for all 7 # 0,

shift in the sampled function (?)( x1 YI) with 1tse1f e and ¢, are

Neumann factors taking the values €
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Eqﬁation (5.2) can be expressed as

N-IN-1 : :
2 TL TI 21l
g, T B R 2 )C-3 > (& Fory )

(5.3)
This is recognized as the Riemann approximating summation for

large N for the following

11
SI(u,v) = cjf ( |zl ><l ——z->p(z1,z2)cos 2m(uz +vz ) dz dz.2
-1-1
(5. 4)

where c is a normalization constant and the continuous variables z

and z, have replaced the sampled variables i and ?1(];’ respectively.

2 N

1

From Bochner's theorem it is known that

© o '
p(zl,zz) = R J‘ j D(u,Vv) exp{-Zni(uz1+vz2)} dudv (5. 5)
-0 - O
where R is a constant chosen so that D(u,v) is a probability density
function [ 16, pg. 207]. Replacing the covariance function in equa-

tion (5. 5) yields

S;(s,v) = CR J"j D(u-g',v-v')K[(u",v')du' v (5.6)

- O ©

where K1 is the two dimensional product Kejer kernel. It is known

that SI(u, v) approaches cR D(u,v) uniformly on compact sets as I
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approaches infinity [ 19, pg. 27. Consequently, it is not unreason-

. 2

able to assume that the variance, ©

FN I
?

as the power spectral density of the process, §.

(u,v), behaves approximately

The results of this analysis have been obtained by first letting
the sampling interval ayppr'oach zero and then letting the window of
observation grow. It is important to mention that if the relaxation
or correlation radius of the covariance function, p, is small com-
pared to the interval of observation, then it is reasonable to assume

2
that the variance, O'F
N,1I

density without increasing the observation window. A similar result

(u,v), is already close to the power spectral

can be obtained for the function F(u,v) defined in equation (2.6) by
scaling the window of observation to unity and noting that f(x,y) is

the sampled version of the continuous process, . In such a case

2 N-IN-1

GFN(u,v) Z Z € € (1- N)(l——)p( cos-%—(u'HvT)

(5.7)

A somewhat different approach from that above will yield
essentially the same resﬁlts. This approach indicates that when the
sampling interval is fixed and the interval of observation increases,
the variances of the frequency domain samples appear to behave as
a sampled periodic function of the continuous power spectral density

D(u,v). When the sampling interval is then allowed to decrease, the
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periodic function of the power spectral density approaéhes that
density. Such results again indicate that it is reasonable to agssume
that the variances of Fourier domain samples behave as the power
spectral density of the original process.

The above stochastic model indicates that for an ﬁnt:orrelated
process, the spectrum tends to be flat, and the variance ofl the
spectral components of the Fourier transform of f(x,y) are fairly
constant over a large range of frequencies, Conversely, if f(x,y) is
a highly correlated process, the variance of F(u,v) tends to be 1afge
toward the low frequencies and falls off rapidly toward Ather higher
frequencies. It will be assumed that the samples, f(x,y), aré' identi-
cally distributed with variance VZ.

It is convenient to express equation (5.7) in an expanded form

in order to investigate certain limiting conditions.

N-1 : '
2 _ ITNA T D 2mur
pF (u,v) = p(0,0) + 2 % CI-N/p<N,0/cos N
N T=1
N-1 '
T T 2mvT :
+2 % (1-—1\-I>p<0, ﬁ>cos = (5. 8)
T=1
N-1N-1 ‘
T T T T 21
IERENCE DS DL VLS Aisact
,T=

In the case of a random process, f(x,y), which is constantly corre-~

lated in one direction, x, with correlation K, and totally uncorrelated
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in the other direction, the variance becomes

c;, (w,v) = (0,0) - K + NK 8(u) (5. 9)
N .

and for the case where p(0,0) = K = VZ, the variance of the identi-

cally distributed samples, f(x,y), then

O'; (u,v) = VZN 8(u) ; (5.10)
N :

Equation (5. 9) indicates that for highly correlated processes in one
dimension the off axis variances are reduced by an amount equal to
the one dimensional correlation, K, and the variances on the axis
corresponding to the ’correlated direction are increased by an amount
proportional to the correlation K. For tﬁe case wheré the one
dimensional correlation equals the variance of the process, equation
(5.10), éll off axis variances are zero and large‘variances are
experienced on the correlation axis. For constant correlation, K,

in both directions the variance behaves as

0; (u,v) = p(0,0) - K +N2K d(u,v) (5.11)
N

and when the correlation equals the variance of the f(x,y) process,

the resulting frequency sample variance is

o‘; (w,v) = N2V 8(u,v) (5.12)

N
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These results indicate that a process f(x,y) with COnstaﬁt :
correlation equal i:o its variance in all directions is a deterministic
constant with a Fourier transform equai to the Kronecker delta
function at the origin.

Another limiting condition that is of interest is the case of
total statistical independence of all samples in the process f(x,y).

In this case the variance of F(u,v) becomes

v = VP C (5.13)

N

This result indicates that for a statistically independent process all
frequencies have identical variances. Under the con.dition. of stla'tis--
tical independence of the samples, f(X,Vl)s. the variance is sufficient
to determine the distribution of frequency components. A Central
Limit Theorem is velid assuming the f(x,y) samp}es are bounded and
identically distributed, and in the li;nit' the distribution of the func-
tion F(u,v) becomes normal [VZO, pg. 2947.

It is of interest to determine how closely to the normal the
distributions of frequency samples behave for correlation in the
process f(x,y). Work has been done in this area in the one dimen-
sional case from the point of view of a strong mixing criterion for an
ergodic process [ 21, pg. 191]. Also, Diananda and others have

proven theorems for limiting normal distributions for the r-dependent



71
one dimensional random process [22]. Expansion to the two
dimensional case is probable, but is not undertaken here. Instead,
an experimental approximation is introduced at this point., It is
assumed that the samples in the frequency domain take on a normal
density for the sake of impiementati;)n of 2 quantizing scheme. This
aséumption, while not rigoroﬁsly derived, is experimentally justified
as the future work will verify.

: Under the normal approximation, the second moment calcula~
tions are sufficient to completely define the distribution at each
frequency sample. Consequently, all frequency sarnpies will have
a normal density varying only as a function of spectral frequency
through the varying second moments. Therefore the probability

density of the amplitudes of the Fourier samples are

_ 1 | 2.2
PFR(Z) = PFI(Z) = WOF _—— exp{-z /.ZGFN(u,V)} (5. 14)
N

and FR and FI are obtained from the equation

Fu,v) = FR(u,v) + iFI(u,v) : o (5.15)

It is useful to express F(u,v) in terms of its magnitude and phase,

F(u,v) = M(u,v) exp {i6 (u,v)} (5. 16)

where
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M(u,v) = [Fg(q, v) + Ff (u,v’ ‘ (5.17)
and |
. - Fi(u,v) o
8(u,v) = tan 1 { —FTI];-—G-;’——‘;-)— (5.18)

From the definition of FR (u, v) and FI(u, v), these random variables
are orthogonal for a given u anq v. Also, from the assumption of a
normal distribution on both FR(u, v) and FI(u,v), the two random
variables are independent for a given u and v. In other words, the
processes FR (u,v) and FI(u, v) as a function of u and v are not inde~
pendent processes, but when sampled at the same frequency, are
independentl. Consequently, thé random variable M(u, v) becémes’

(ua v)

Rayleigh distributed with parameter 0;
N
2 2 .
P (z) = S F— exp {-z /20 (u,v)} U(z) : - (5.,19)
M 2 F, )
GF (u,v) N
N

where U(z) is the unit step function in z. Because of the independence
of FR (u, v) and FI(u,V) at a given u and v, the random variable 6{u, v)
is equally likely to take on any value from zero to 2m and consequent-

ly is uniformly distributed and independent. of frequency.

1
- O<z<2m
_ 2t - "=
PG(Z) - { 0 otherwise (5.20)

lDavenport and Root, [ 23, pg. 161].
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5.2 Experimental Implementation

- The analytié results of the previous section of this chapter
indicate that a likely quantization rule is a quantizing technique for
each Fourier domain sampie, which varies as a function of spatial
frequency. The individual quantizer for each frequency sample is
found to behave as the power spectral density of the original process
at that given frequency. Therefore it is necessary to know the
covariance function or its transform before quantizing canv take piace.
To this end an 'experimental determination of the covariance function
was made of the footpad moon scene test image displayed earlier in -
chapter 2. The results suggest that the correlation of a given picture
sample is zero for samples greater than fifteen elements away, and
the shape of the covariance approacheé that of a two dimehsional
Gaussian surface. Therefore, as an approximation, a suitable
power spectral density is a two dimensional Gaussiaﬁ function. Such
a function has been incorporated‘as the variance plane for the experi~
meni:al"quant’ization rules presented in this chapter.

A comment should be inserted here concerning the experimen-
tal use of the Gaussian density. From one dimensional linear
predictibn'théory it is known that a Gaussian spectrum implies a
deterministic process as defined by the Paley—Wiener theorem [24].

The fact that some of the experimental results of this report are
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based on a two dimensional Gaussian spectrum does not mean that
the process f(x,y) is deterministic. The results only provide empir-
ical evidence that the Gaussian spectrum is aﬁ approprié.té experi-
mental approximation to the f(x,y) process.

The actual quantization rule developed for ,exéerin;lental imple-
mentation is not derived to minimize mean square’qua'ntizat;ion error.
'Instead the quantization law is one in which the quantum ‘lyevels are.
set according to an equally likely probabiAlity‘ of being in aﬁy given
quantum interval. While such a rule is not optimum in the rﬁinhnum
quantization noise sense, it does offer a uniform distri’butlion of
quantum levels to any type of transmission éhannél noise,

Since the original spatial scene was. coded to 64 levels, 64
levels will be the number of quantum intervals sought in the frequéncy
domain quantization in order to attain an equal number of code words
necessary for transmission in each domain. Fighre 5-1 illustrates
three quantization rules, The first is a simple six bit linear quanti-
zation law constant over the entire frequency plane. This method,
presented for comparative purposes, approximates the rule that
would be used if the original scene were totally statistically indepen-
dent. It linearly quantizes each sample point to one of 64 levels
determined by the maximum value in the frequency plane. The

second rule quantizes each of the real and imaginayry components of
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each frequency sample to one of 64 levels according to a Gaussian
distribution with a variance which changes as the two dimensional
Gaussian spectrum over the frequency domain. The third scheme
quantizes the magnitude of each frequency sample to one of 64 levels
according to a Rayleigh distribution whose variance also changes as
the same power spectrum over the frequency domain. The phase is
uniformly quantized to one of 64 levels independent of spatial fre-
quency. Figure 5-2 contains the results of the above three rules.
Figure 5-2a is the reconstructed moon scene using the full computer
register length of 18 bits. Figure 5-2b is the reconstructed moon
scene using the linear quantization scheme, and obviously, is not
acceptable. The Gaussian and Rayleigh techniques displayed in figures
5-2¢ and 5-2d, respectively, show considerable improvement over
the linear approach. Little, if any, visible quahtization noise is
evident as compared to the 18 bit reconstruction.

In order not to restrict the experimental results to one particu-
lar scene, two additional images have been quantized using the
Gaussian density distribution for the frequency samples. These
results appear in figure 5-3 and also behave properly under the

quantization operation.
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c) 64 Level Gaussian Real and d) 64 Level Rayleigh Magnitude and
Imaginary Quantization Linear Phase Quantization.

Figure 5-2. -- Examples of Quantization for Footpad



i, B
a) No Quantization b) 6 Bit Quantization

c) No Quantization d) 6 Bit Quantization

Figure 5-3 64 Level Gaussian Quantization
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5.3 Invariance to 0 Plane

One result 6f this chapter has been the derivation of a quanti-
zation scheme based upon a variance which is a function of frequency.
Therefore, a variance or 0 plane is uséd to define the variance of
the density function frorh which quantu:rh levels are determined at
every spatial frequency. The variance or 0 plane behaves as the
spectrum of the covariance function of the original process, f(x,y).
The problem of determining the variance plane on some distance
spacecraft could far outweigh the advantages of Fourier coding, and,
from a practical point of view could prejudice all Fourier coding
techniques. It is the purpose of this section to develop an approach
which will allow for a‘n approximation to the variance plane with good
experimental reconstructions. The following heuristic arguments
are used as an introduction to the ex'perimental results that follow.

First, the 0 plane must be symmetric about l:hé origin due to
the nature of the Fourier transform of the covariance function.
Second, there is no a priori knowledge to indicate that a particular
direction will have a higher degree of correlation than any other
direction. Consequently, the 0 plane should be circularly syfnmetric.
Finally, there is no a priori knowledge to‘indicate that a particular
periodicity will be prevelant in the unknown image. Therefore, the

0 plane should be monotonically increasing. A likely candidate for
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the o plane is a two dimensional Gaussian surface with u ahd v
variances equal. Such a surface indicates that the original covari-
ance function was also Gaussian, a not too unnatural assumption.
The remaining question is how rapidly should the Gaussian curve
fall off in the 0 plane? This question is related té the degree of

| correlation of the original scene. The 0 plane has been reduced to

: 2
one degree of freedom rather than the original N degrees of free-

2
dom.

An experiment has been performed in order to demonstrate a

certain tolerance for various degrees of different Gaussian surfaces,

Also, a l [Sm 28 ][ sin av] | plane has been used with little notice~
able effect on the retransformations. Three different Gaussian
.surfaces were used in the experiment., The Gaussian Surfac.e vari-
ances ranged over a factor of four in value. In addition to visual
reconstructions, a matched filter Correlation meésurement was
made with respect to the intermediate Gaussia‘,n‘curve. The visual
and correlative results are displayed in figure 5-4. From a visual
consideration, all four images appear relatively unchanged. The
matched filter indicates that the least degree of correlation exists

in the non-Gaussian surface. However,'thé visual ’resultsvdo indicate
a fairly large degree of tolerance for the 0 plane, especially consi-

dering the large range of variance used for the Gaussian surfaces.
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a) Gaussian Surface, Intermediate b) Gaussian Surface, Small Variance,
Variance, Matched Filter Correla- Matched Filter Correlation : 0. 3675
tion : 1. 000

c¢) Gaussian Surface, Large Variance, d) ’, T (sin au)/au] [ (sin av)/av]‘
Matched Filter Correlation : 0.4278 Surface, Matched Filter Correla-
tion : 0., 2022

Figure 5-4. -- Gaussian Quantization with Different Variance Planes
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Results such as these are encouraging in the respect that the exact

spectrum is not necessary for quality reconstructions.



CHAPTER 6
NOISE EFFECTS

A major concern of c’ommunication system designers is the
susceptibility of data to noise interference. It is important, then,
to study the effects of noise on the Fourier coding communication
system. Two particular noise patterns of interest are spatially
correlated noise and spatially random noise. ’Spatially correlated
noise will usually result from some peculiar characteristic ‘of an
image sensing device such as a vidicon mesh pattern or gé-ometric
distortion due to poor deflection amplifiers., Spatially random noise

often occurs in digital communication systems as channel noise.

6.1 Binary Symmetric Channel Noise
In most digital comrriunica,tion systems the code alphabet
consists of two symbols which are subject to perturbations in the
channel, and these perturbations introduce random noise at the
receiver. The binary symmetric channel is used as the noise model
in the study of channel effects on Fourier.coding. The classical
representation of such a communication channel is given in figure

6-1 where the probability of receiving an incorrect symbol is p

83



Figure 6-1.--Model of a Binary Symmetric Channel
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irregardless of which symbol is transmitted.

An intuitive justification for transmitting the frequency rather
than the spatial domain of an image is the fact that channel noise
introduced in the Fourier transform of an image tends to be distri-
buted evenly over the entire reconstructed image. Consequently the
noise manifests itself as a low frequency effect in reconstruction.
Since the eye is more sensitive to the high frequency ''salt and
pepper' effect of channel noise in the spatial domain, the same
channel noise power in the frequency domain is somewhat less offen-
sive. Figure 6-2a shows a mid-grey scene after having passed
through a channel with probability of error of 0.1. Figure 6-2b is
the Fourier transform of the output of the same channel whose input
was the Fourier transform of the mid-grey scene. Both scenes have
the same amount of noise energy but that energy is distributed quite
differently. A quantizing and coding method can be developed to take
advantage of the inherent high frequency or "salt and pepper' noise
immunity that Fourier domain coding offers., As a first step in this
direction a requirement will be made that each quantum level occur
equally likely as any other quantum level. This quantization criter-
ion will guarantee that each code word is equally likely to occur and
will avoid any unexpected noise biasing, since the binary symmetric

channel effects each code bit, and therefore each code word,
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a) BSC Noise in Spatial Domain b) Fourier Transform of BSC Noise
in Fourier Domain

Figure 6-2. -- Binary Symmetric Channel Noise with Error Rate p = 10_1
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independently of all others. Such a quantization requirement results
in the quantization rule employed at the end of chapter 5. As was
mentioned earlier, such a scheme is sub-optimum with respect to
quantization error, but is better suited for channel noise immunity.

Figure 6-3 contains a series of experimental results using the
Rayleigh quantization law with variance changing as a function of
frequency according to the power spectrum of the original scene.

The footpad and its quantized Fourier transform are passed through
the same binary symmetric channel for two different error probabili-
ties. These pictures are presented to demonstrate a further compli-
cation that must be avoided. The frequency induced noise energy is
concentrated in low frequency variations which are so large that the
high frequency information is lost due to normalization in reconstruc-
tion. This can be explained by the fact that the absolute, as opposed
to the relative value of a bit error is much larger in the regions
where the power spectrum is large. In the case of the power spec-
trum of the footpad, the larger values occur at the lower frequencies,
and thus the lower frequency noise errors have a greater effect on
the reconstructed image in the spatial domain, Further demonstra-~
tion of this effect is afforded by figure 6-4. Figures 6-4a and 6-4b
are the footpad noise scenes with error rates éf 10—1 introduced in
the space and frequency domain respectively. Figure 6-4c is the

result of the same error rate channel noise in the frequency domain
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b) 10_3 Error Rate in the Fourier
Domain

d) 10_l Error Rate in the Fourier
Domain

Figure 6-3. -- Binary Symmetric Channel Noise in Spatial
and Fourier Domain Transmission
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but with 20 x40 or 800 of the lowest spatial frequencies transmitted
error free. It is evident from figure 6—40 that the noise energy is
now concentrated in the higher frequencies. Figure 6-4d has the
lowest 6500 spatial frequencies transmitted error free.

As a result of the statistical regularity of samples in the fre-
quency domain, a much smaller amount of error correction in this
- domain will yield a far better noise immunity than the same amount
of efror correction in the spatial domain. The nature of the quanti-
zation law is such that errors in certain positions of the frequency
domain are much more bothersome than in other positions due to the
large statistical variance of samples at these frequencies, There-
fore, it is natural to develop an error correction rule to correct for
errors only in these large variance regions. One such rule would be
to error correct code those frequency samples which correspond to
positions in the frequency domain where the power spectrum of the
covariance function indicates a high probability of large sample
values. This technique alone requires an increase in bandwidth to
facilitate the error correction. However, it has been found that the
small increase in bandwidth in the Fourier domain will result in far
better reconstructions than the same increase in the spatial domain.

It is important to emphasize that the coding technique used for
the Fourier domain should be tailored to a particular channel capa-

-3
city. If the channel noise has an error rate less than about 10 ,
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then it appears that no error correction is necessary as in figure
6-3b. However, under the circumstances of a high eiror rate, it-
often becomes more desirable to transmit as many error corrected
samples as possible at the expense of not transmitting the entire
frequency plane, Using such a system, corrected, but not nécessar-
ily errorless, data could be received until normal picture bandwidthi-
has been reached, at which time transmission is terminated. In
order to implement such a scheme, an error correcting code must
be selected. The code selected will depend on hon much of the fre-
quency domain will be omitted due to the inc,rea,se‘d error cofrecting
capability of the code. The main point of this discussion is to illus-
trate the variety of coding implementations possible for different
channel conditions.

| A specific example of the potential of the Fourier coding tech~
nique is presented below. A high error rate channellis assumed
with rate p = 4 X 10-2. The equal bandwidth criterion is assumed.
Consequentlj, the Fourier ching tephnique requires the exact same
bandwidth as conventional spatial domain transmission systems.
The error correcting code must have at least six information bits.
Two such codes which become candidates ‘for impler_nehtation are a
first order Reed Muller code and a Bose Chaudhuri-Hpcquenghem
code, (BCH) [25; 26, pg. 162]. The particular Reed Muller code

of interest is a (32,6) code in which the minimum distance between
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code words is sixteen,and therefore, the code is capable of correct-
ing a total of Sevgﬁ errors., The BCH code is a (31,6) code and is
also capable of correcting seven errors. The BCH code will be used
in the following discussion. Utilizing an error correcting code capa-
ble of seven error correctién’s dpes not mean that the six information
bité will be received over the noisy channel error free. Since each
code word length has been increased to thirty-one bits, eight or more
errors pevr code word cannot be guaranteed to be corrected. The
probability of having eight or more errors in the BCH code ié given

by the partial sum of the binomial distribution
‘ 31 ) . :
P(8 or more errors) = I ( 3i_l> pl(l-p)?’l"1 (6.1)
- i=8

where p is the binary symmetry channel error rate, This probabii-
ity is an upper bound for the incorrect reception of a code word since
the possibility of correct reception for greater than seven errors
still exists but is unknown. For the specifié channel error rate of

4 x10-2, the error corrected data samples will be received with
probability of error no greater than 2,26 X 10“5 [27]. Figure 6-5
displays the results of this error co_r;‘eéting procedure. Figure 6-5a
and 6-5c are two test scenes whose spaﬁal domains are transmitted
through the binaéry syrhmetric channel with the above error rate.

Figure 6-5b and 6-5d are the error correction Fourier domain



pe
o

et
VY .‘:,,y”",

£

= PR

s

a) 4x 10”2 Error Rate in the Spatial
Domain

Error Corrected Retransformation

Error Rate in the Spatial

¢) 4x107%
Domain

Figure 6-5. -~ Equal Bandwidth Error Correction Technique
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transmission results for each of the test scenes. While there is a
loss of high frequency information in figures 6-5b and 6-5d, there is
a marked improvement over the spatial coding in figures 6-5a and
6-5c. It is evident that this particular type of coding offers a consi-

derable advantage for very noisy communication channels.

6.2 Correlated Noise

Removal of certain noise patterns is possible in the frequency
domain. Such a technique is especially successful when the noise
has a high degree of correlation. In this section spatially correlated
noise will be any unwanted characteristic of an image that has a
reasonably well defined power spectrum. The source of the corre-
lated noise is unimportant and need not be investigated. Correlated
noise removal techniques can be implemented b‘y multiplication of a
filter transfer function with the Fourier transform of an image, or
by the energy subtraction of certain portions of the frequency domain
of an image.

Multiplication filtering can take the simple form of frequency
band filtering or the more complicated form of matched filtering as
discussed earlier in chapter 4. An example of a smoothly varying
low pass filter in which there is more filtering power in one dimen-

sion than in the other is afforded by figure 6-6. Examples of very



Figure 6-6. -- Nonlinear Multiplicative Filter
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simple low and high pass filtering are given by figure 6-7. The‘léw
pass filter used was a 40 X40 square aperture binary mask which

had the value 1 in the square and zero outside of fhe square. The
inverse of this filter was used as the high pass filter. Figure 6-7a

is the original scene and contains the block letters '"USC'. Figure
6-7b is the logarithm of the magnitude of the Fourier transform of
"USC'. Figures 6-7c and 6-7d are the low pass and high pass filtered
versions of the original, respectively.

Often a low pass filter can be used successfully for noise
removal in the presence of a tremendous amount of high frequency
noise. Figure 6-8 demonstrates this capability. Figure 6-8a is a
two level "USC' block letter scene which has an incorrect element
on the average of one every fourth sample. The noise tends to be of
a high frequency nature with no particular dimensional correlation
visible. A simple 40 x40 low pass filter will yield the results of
figure 6-8b. This technique can also be used for high frequency
noise removal in grey-scale scenes. Figure 6-8c is the result of
transmitting the Surveyor box scene through a channel with error
rate p = 10_1. The low pass filtering of this scene results in figure
6-8d where a circular filter of radius 51 frequency samples has been
used. This technique allows viewing of low frequency information
otherwise obscured by the high frequency noise.

As was mentioned earlier, certain noise patterns can be
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a) Block Letters "USC" b} Logarithm of the Magnitude of
the Fourier Transform

¢) Low Pass Filtered Reconstruction d) High Pass Filtered Reconstruction
(40 x 40 Binary Mask Filter) (Inverse 40 x 40 Binary Mask
Filter)

Figure 6-7., -- Fourier Domain Filtering



B k] B
SRS A
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Figure 6-8. -~ High Frequency Noise Filtering
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removed by an energy subtraction in the frequency areas of large
noise content, This procedure might be used when it is desirable
to remove noise of a given spectral frequency, but not remove image
information at that frequency. The energy subtraction noise removal
method is only recommended when very exact noise power spectral
density information is available, because, subtraction of too much
energy or energy at the wrong frequency will result in total image
degradation corresponding to application of the superposition princi-
ple. An example in which the subtaction technique is possible is
afforded by Figure 6-9. Figure 6-9a shows the footpad scene with a
highly correlated one dimensional noise pattern that is quite periodic.
Because the period and direction can be accurately measured, a
noise spectrum can be properly determined. A subtraction of energy
in this part of the frequency domain will then result in figure 6-9b.
Similar results can be obtained for two dimensionally correlated

noise as seen from figures 6-9c and 6-9d respectively.

6.3 Conclusions
The experimental results of this chapter indicate that process-
ing in the Fourier domain offers advantages for noise improvement
techniques. Specifically, for high channel error rates, transmission

of only error corrected data permits far superior reconstructions
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a) One Dimensionally Correlated Noise b) Noise Removed

(Cosine [a(x+y)] Where a = .125
Cycles/Picture Element)

¢) Two Dimensionally Correlated Noise d) Noise Removed
(x,y Periodicity = 32 Picture Elements)

Figure 6-9. -- Spatially Correlated Noise Removal
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than spatial domain coding. The frequencies that are error correc-
ted are a functioﬁ of the power spectrum of the irriage, but the power
spectrum can easily be approximated by a simple Gaussian function,
and need not be known a priori, For channel error ratés low enough,
no error correction is necessary and the noise power is averaged out
" over the entire retransformed plane, |

In the area of correlated noise removal several examples are
presented to show the case with which spatial filtering can be i.mpyley’- |
mented. The resuits of these spatial filtering techniques are limited
only by the lack of knowledge of the noise power spec'tru'rn. The
advantage of computer implementation of two dimensional spatial
filtering lies in the large dynamié range of the filter domain and

thu:s’a iarge variety of filtering pdssibilities.



CHAPTER 7
BANDWIDTH REDUCTION

In the invesfigations of the previous chapters analytic and
experimental results have pointed to tﬁe advéntage of usipg t:he‘
startisti’cal regularity of fréquehcy samples in the Fourier domain.
This has held true in developing qﬂantization and noise immunity
coding methods. It seems logical, then, thata similar’technique
might be pursued in the study of bandwidth reduction in the frequency
dorn‘ain.' It will be shown that very large bandwidth reductions can
be obtained in the Fourier domain w_ith far less picture d‘egradatio‘n
than in the spatial domain for the same bandwidth reduction factor.
'I'hese‘ results are valid fof sevefe bandwidth limited commﬁxiica.tion
systems. More pleasing results can a&so be obtained with much
smaller bandwidth reduction factors. Four different techniques are
investigated below. The first technique simply indicates the quality
of reconstructions obtainable from binary mask low pass filters., A
scanning algorithm method is described in which a sequential image
construction communication system is developed. A section of the
chapter is devoted to applying spatial domain bandwidth reduction

techniques to the Fourier domain; and finally, coding and quantization
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techniques are discussed with respect to bandwidth reductions.

7.1 Fixed Aperture Bandwidth Reductions

Probably the most obvious method of saving bandwidth in a
Fourier communication system is to not transmit the high frequency
information. This is equivalent to low pass filtering an image, and
will result in blurred retransférmations. The technique will be
referred to as a fixed aperture method. Most of the image energy is
compacted into few low frequencies, and therefore a large percentage
of total image energy can be transmitted with a surprisihgly small
bandwidth requirement. In addition, the large bandwidth reductions
obtainable by the fixed apertﬁre method are superior to the same
reductions applied only in the spatial domain.

The experimental results presented in this section have been
obtaingd with circular apertures centered about the origin of the
Fourier domain. Using such apertures, energy distributions as a
function qf ;‘adial spatial frequency have been taken for different
test scenes. These results are presented in figure 7-1 in which the
energy within a given radial frequency is plotted. The radial fre-
quency axis has been converted to a percentage of total ban&width
axis for display purposes. It is evident from this ﬁgure that a very
large percentage of image energy is concentrated in a very small

portion of the bandwidth in the frequency domain. It is this fact that
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allows the development of noise immunity techniques as in chapter 6
and the aperture bandwidth reduction techniques in this chapter.

Figures 7-2 and 7-3 present results for twd test scenes. The band-
width reductions and amount of image energy transmitted are listed
in the captions. Figure 7-4 presents two different bandwidth reduc-
tion factors for both the Fourier and spatial domains. A sample and

hold technique has been used to implement the reductions in the

spatial domains.

7.2 Scanning Algorithms

The particular bandwidth reduction technique which is incor-
porated in the Fourier domain depends entirely on the degree of
resolution which is desired in the reconstruction after transmission.
It should be emphasized that any modification to the Fourier domain,
even if only at a single spectral point, affects the entire reconstruc-
tion. For this reason high resolution reconstructions are difficult
to obtain for any significant amount of bandwidth reduction. However,
one promising technique for Fourier domain bandwidth reduction is
afforded when a severe bandwidth reduction is necessary due to large
communication distances, or possibly, due to a desire to initially
investigate a scene before full bandwidth transmission is decided
upon. Uﬁder such conditions certain scanning algorithms can be

developed so that a very high percentage of the energy of a picture
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a) Bandwidth Reduction 64:1 b) Bandwidth Reduction 32:1
98. 3% Image Energy Transmitted 99. 5% Image Energy Transmitted

c) Bandwidth Reduction 16:1 d) Bandwidth Reduction 4:1
99. 8% Image Energy Transmitted 99.9% Image Energy Transmitted

Figure 7-2. -- Bandwidth Reductions with Circular Apertures
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a) Bandwidth Reduction 64:1 b) Bandwidth Reduction 32:1
92% Image Energy Transmitted 95% Image Energy Transmitted

c¢) Bandwidth Reduction 16:1 d) Bandwidth Reduction 4:1
98. 3% Image Energy Transmitted 99. 8% Image Energy Transmitted

Figure 7-3, -- Bandwidth Reductions with Circular Apertures



b) Spatial Domain 36:1

c) Fourier Domain 4:1 d) Spatial Domain 4:1

Figure 7-4. -- Equivalent Spatial and Fourier Domain
Bandwidth Reductions
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can be transmitted with very few data points. A scanning algorithm
is an order of transmission of spectral points which usually would
follow the peaks in the power spectrum if known. As an example,
figure 7-5 contains two Fourier domain scenes and suggested scan-
ning algorithms in each case. Notice that the scanning algorithms
tend to follow the high energy frequency samples as would be indicated
by the power spectrum of the process. Since the energy in the spatial
and Fourier domains is identical, a transmission technique can be
devised so that a cumulative record of energy transmitted is retained.
In this way transmission can be terminated at any desired percentage
of total energy available. If the second algorithm presented in figure
7-5 is used, the results are the same as those obtained in section 7.1
for fixed circular apertures. Referring to figures 7-2 and 7-3 it is
evident that recognizable reconstructions are obtained for even the
largest bandwidth reductions. The reconstructions would be valid
enough to base a decision as to the advantage of transmitting more of
the spectral points for better reconstructions or saving bandwidth

and focusing the camera on a new scene. In this way a scene can be
sequentially built up to obtain better and better resolution until the
total Fourier domain has been transmitted or until bandwidth con-
straints are exceeded. Figures 7-2 and 7-3 demonstrate the results

of this type of construction of transmitted scenes.
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a) Logarithm of the Magnitude of the b) Rectangular Scanning Algorithm
Fourier Transform of "USC"

Ae
/—‘N23456

c) Logarithm of the Magnitude of the d) Circular Scanning Algorithm
Fourier Transform of the Footpad

Figure 7-5. -- Scanning Algorithms
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7.3 Spatial Techniques in the Fourier Domain

A tremendous amount of research effort has been expended in
developing bandwidth reduction techniques in the spatial domain
[1,28-327. Therefore, it seems practical to attempt to apply these
techniques to the frequency domain. As an example, edge detection
is useful in spatial domain bandwidth reduction techniques. An edge
is defined as a change in the value of a picture sample, and the edges
and their positions are coded and transmitted in this bandwidth
reduction method. The difficulties of adapting such a technique to
the Fourier domain are immediately obvious when defining frequency
edges due to the very large dynamic ranges of this domain. This
same dynamic range, coupled with changing sign, causes a severe
problem in any type of predictive coding for real and imaginary
frequency components, because knowledge of one sample does not
significantly reduce the entropy concerning adjacent samples. One
suggestion is that the magnitude function, M(u,v), discussed in
chapter 5, might be well enough behaved to apply predictive or inter-
polative sampling. A sample and hold scheme has been implemented
on the magnitude of each Fourier sample while retaining complete
phase information. The results are displayed in figure 7-6a and
indicate poor retransformation. While the magnitude is better

behaved than either the real or imaginary components of each



d) Random Sampling of High Frequenc

Figure 7-6. -- Spatial Domain Techniques Applied to the Fourier
Domain for a Bandwidth Reduction of 2:1
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frequency sample, its variance is changing with the covariance power
spectrum as a function of frequency, and thus does not lend itself to
sample and hold techniques.

Most of the deterministic sampling techniqueé used in spatial
bandwidth reduction schemes are undesirable for use in the Fourier
domain. As an example of a deterministic sampling technique,
consider sampling in a checkerboard fashion over the two dimensional
Fourier plane. The sampling function, S(u,v), can then be repre-

sented as

utv
S(u,v) = Li——%—l)———-— (7.1)

and takes on the value zero or one depending on whether utv is odd or
even respectively, The sampled frequency plane can then be repre-
sented as the product of F{u,v) and S{u, v) and the retransformed

image, g(x,v), becomes

N-1 utv
1 14(-1) 2mi
glx,y) = NuzvzzoF(u.v) ==t |exp {———N (ux+vy)} (7.2)

Since (-1) can be equated to exp (iT), equation (7.2) can be further

reduced to

) | N-1N-1
ghe,y) = 5 [Ey) 5 B T Flu,v) exp { T Y

u, v=0

(7.3)
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where f(x,y) is the two dimensional Fourier transform of F(u,v).
The result of the second term within the square brackets becomes a
Fourier transformation with a phase shift, thereby introducing a

space shift in the spatial domain.

glx,y) = -;—[f(x.v)*f(ﬂg, Y+g>] (7.4)

A vivid example of this type of sampling is shown in figure 7-6b.
Close examination of this figure reveals that equation (7.4) has been
experimentally verified.

In general any sampling function, S{u,v) can be expressed as

Sta,v) = LiWT(‘i-l’-)— | (7. 5)

where W{u,v) takes on the value +1 as some function of frequencies u
and v. Consequently, the retransformation of the sampled frequency

plane will be

gbe,y) = 5[ e y) + £, ) B wix, )] (7.6)

where @ implies a two dimensional spatial convolution., If the term
f(x,vy) @ w(x,y) is taken to be noise, then the average noise power
will be a function of the original signal, f(x,y), and will be fairly

strong. Thus any deterministic sampling procedure will affect the
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convolution noise in a deterministic manner. A nondeterministic
sampling procedure that might be envisioned is one in which w(u,v) |
becomes a random variable over the frequency plane. If this random
variable is highly uncorrelated, then the noise power is spread out
over the reconstructed image. Such a technique was implemented by
developing a random binary plane where 50% of the frequency compo-
nents were sampled at random positions. The recon‘s’tructed image
is displayed in figure 7-6c. Notice that the effect of convolving the
overpowering footpad section of the image across the plane is clearly
visible. This can also be interpreted as the fact that .the error intro-
duced in the low frequency portion of the Fourier domain, by not
sampling there, induces an absolute amplitude noise that saturates
the higher frequency information. The next step in the random sam-
pling procedure is to random sample only the high frequencies. This
has been done with considerable improvement over figﬁre 7-6¢c and

is presented in ﬁguré 7-6d. Although i:he improvement is great over
figure 7-6c, the image reconstruction is still poor for the small

amount of bandwidth gained.

7.4 Coding
In chapter 5 a quantization process was developed which allowed
the entire frequency domain to be coded in six bits. The retransfor-

mations, figures 5-2 and 5-3, were comparable, ignoring truncation
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error, to the original image; and therefore, equal bandwidth require-
ments were achieved for the spatial and Fourier domains. A band-
width reduction is possible by reducing the number of quantization
levels or by reducing the number of code words for certain frequen-
cies. Combinations of these two techniques have been implemented,
and are presented below.

An example of the first technique, shown in figure 7-7b, is to
quantize the entire plane into 32 instead of 64 levels according to a
frequency varying power spectrum. This technique obviously results
in grea’ter quantization noise. About 16.7% of the band@idth has been
saved., Notice that there appears to be diagonal low frequency modu-
lation from the lower left corner to the upper right corner caused by
the quantization error.

The second technique to be implefnented is one that codes cer-
tain frequency samples to just four bits even though they have been
quantized to 64 levels. This means that any code word greater than
seven is changed to code word seven and the proper sign bit affixed.
The frequencies for which this coding scheme is used are those
spectral points which are indicated to have small absolute values by
the power spectrum plane. Such a coding téchnique does not add to
the quantization noise but does introduce a coding error at certain
frequencies. _ The results of this technique are indicated in figure

7-7c. The bandwidth saved is 23.5%. Notice that this technique has



a) 64 Level Gaussian Quantization. b) 32 Level Gaussian Quantization.
No Bandwidth Reduction 16. 7% Bandwidth Reduction

N

c) 64 Level Gaussian Quantization d)32 Level Gaussian Quantization and
and 4 Bit Coding of High Fre- 4 Bit Coding of High Frequencies.
quencies. 23.5% Bandwidth 35% Bandwidth Reduction.
Reduction

Figure 7-7. -- Quantizing and Coding Bandwidth Reduction Techniques
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introduced an undulating effect in the left center of the figure.
Combination of the above two techniques results in a bandwidth
reduction of 35% when a 32 level quantization scheme is combined
with four bit coding at low amplitude frequencies. Results of this
procedure are displayed in figure 7-7d. Figure 7-7a is a 64 level
scene without bandwidth reduction transmission presented for com-
parison. From figure 7-7d both the diagonal modulation due to 32
level quantizing and the horizontal undulation due to four bit coding
are visible. Consequently, these techniques tend to give erroneous
reconstruction over the entire plane, and probably are not valuable

enough as a trade off for bandwidth saved.

7.5 Conclusions

A bandwidth reduction technique has been presented which,
coupled with scanning procedures, combines to form a novel and
promising method of image construction with very large bandwidth
reduction factofs. This technique could have spa;ecraft applications
where bandwidth is a significant factor and transmission should not
be wasted on redundant images. Decisions concerning the desirabil-
ity of transmitting the full bandwidth of a scene can be made after
the transmission of a small portion (on the order of one sixtieth to
one thirtieth) of thé frequencies of the scene.

Applications of spatial bandwidth reduction techniques in the
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Fourier domain have met with little success. The dynamic range in
the Fourier doma;ln results in impractical edge detection coding
methods. The dynamic range coupled with rapidly changing phases,
and thus signs of real and imaginary frequency components, causes
most types of predictive and interpolative rules to fail, especially
for any significant amount of bandwidth reduction. Sampling téch-
niques fail because of the convolution effect in retransformation.
Uncorrelated random sampling procedures result in large noise
components spread over the entire space domain.

The newly developed Fourier domain coding laws offer little
more promisé for bandwidth reduction. Both coding and quantization
noise become large when any amount of bandwidth is reduced. This,
in part, can be attributed to the fact that any frequency alteration
affects the whole spatial domain. While the reconstructions obtained
from the bandwidth coding and quantizing schemes produce recogniz-
able and fairly pleasing results, the amount of bandwidth saved is
not enough to justify the development of the necessary frequency

coding techniques.



CHAPTER 8
SUMMARY

This chapter summarizes the results of research reported in
the previous chapters. In addition, a brief discussion on the philos-
ophy of computational techniques for maximum accuracy and display
purposes is presented. Finally, suggested future research stemming

from the results reported here is briefly discussed.

8.1 Computation and Display

In chapter 2 it was implied that single precision integer arith-
metic was satisfactory for use in the Fourier algorithm if all norm-
alization procedures were delayed until absolutely necessary. The
same philosophy has been maintained in processing the planes of
data in all other computations besides Fourier transforming. An
interesting dichotomy arises from using this normalization approach
when making comparisons with displayed results. It can, and has
happened, that certain retransformed planes of data are a closer
match to the original before normalization than after. In other
words, an original picture might be restriéted to six bit quantization,

whereas, the retransformed image could very likely contain levels
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greater than 63, Unfortunately, all picture elements greater than
63 will be displayed on the output monitor modulo 64, a very dis-
tressing circumstance to the viewer. Therefore, all processed
images must be normalized to 63 before viewing. But such a norm-
alization procedure can introduce a greater discrepency between the
original and post-riormalized image than between the original and
pre-normalized image, However, the ultimate receiver of this data
processing is the human eye, and consequently numerical accuracy
will often be sacrified for visual results,

Another topic of discussion is that of reconstructing images
after a Fourier transformation back to the spatial domain. As indi-
cated in chapter 3, there exist two means of reconstructing an image
from a half plane of frequency data. One approach is to make the
frequency plane symmetric conjugate, thereby guaranteeing a real
image retransformation., The "second approach is to retransform
with half the Fourier plane being zero, and then extract the real field
of data from the cornplex plane of retransformed data. This is the
Hilbert transform approach. From an experimental point of view, it
has been found that the former symmetric conjugate plane approach
results in slightly superior image reconsfructions for the following
reasons, Since the frequency plane is made symmetric conjugate
before retransformation, the output plane is guaranteed to be real.

However, due to the finite computations involved, certain errors,
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some of which will be in the imaginary fields of data, will accumu-
late. The numerical values that appear in the imaginary data fields
are several orders of magnitude smaller than the real field data and
do not affect tl}e real data significantly. In the Hilbert retransforma-
tion approach, both real and imaginary data fields are of the same
order of magnitude; the former contains the desired image and the

. latter contains the Hilbert transform of the image. Because of the
similar orders of magnitudes, interaction between the fields of data
will be more significant, and the imaginary data field will tend to |
have a greater influence on- the real field in the Hilbert case than in
the symmetric conjugate case. For this reason all of the experi-
mental results presented have been obtained using the syrnrnetric’

conjugate method.

8.2 Conclusions of Research

Chapter 1 indicated that the object of research was to investi-
gate the feasibility of developing a Fourier image coding technique
that might have advantages over spatial image coding for certain
communications applications. The results of this research indicate
that Fourier coding is feasible, and offers éigniﬁcant advantages for
communicating images over certain types of channels. There are
four general conclusions to this research that should be emphasized.

The first successful result is the fact that it has been
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experimentally possible to verify that equal bandwidths are possible
for the Fourier aﬁd spatial domains. The derivation of probability
density functions for Fourier domain saniples provide for the devel-
opment of a frequency variable quantization scheme. Using‘ such a
scheme, a variance, or 0 plane, concept was introduced which pro-
duces a different density function, and therefore quantization law
for each frequency sample. The results of this investigation allow
for the experimental development of equal bandwidth requirements
in both spatial and Fourier domains.

The second result of the research which deserves further
mention is the matched filter image evaluation technique presented
in chapter 4. While research in this area needs further investiga- |
tion, it should be mentioned that fairly encouraging results have been
obtained. The ekperiment in chapter 4 reveals that the matched
filter evaluation procedure correlates well with the psychophysical
viewing properties of the human observer. In addition, the matched
filter evaluation tool is used in chapter 5 to discern subtle differ-
ences, undetectable to the eye, in using different variance planes in
the quantization scheme presented in that chapter. While the matched
filter has been used with some success, it is not to be interpreted as
the answer to all automatic image evaluation procedures. Since the
filter does not differentiate between relevant and irrelevant images,

it should not be used as an evaluation tool without the parallel use of
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the human observer.

The third result of interest is the noise immﬁnity work pre-
sented in chapter 6. In general, the Fourier domain offers greater
immunity in transmission through a noisy binary symmetric channel
than does the spatial domain. For very low error rates the Fourier
domain is superiér becéuse the small émount of noise energy intro-
duced in the frequency domain is averaged over the entire spatial
domain in retransformation, and thus becomes less offensive to the
eye than the equivalent "'salt and pepper'' noise introduced directly
into the spatial domain. For extremely high error ral;es it becomes
desirable to introduce an error correcting code system. The addi-
tional bandwidth required for parity bits in a code word is recovered
by transmitting a éomparable number of fewer data points, This is
advantageous in the frequency domain since the fewer data points
transmitted still contain over 90% of the energy in the complete
image. The result of this technique is an error reduced retrans-
formed image which is incomplete in its higher frequencies. How-
ever, the error reduced 90% energy retransformed image is far
superior to the spatially transmitted error abundant 100% energy
image, as verified by the results of chapter 6.

The final result obtained from this research is the method of
bandwidth reduction and sequ'enﬁial image construction presented in

chapter 7. It was pointed out that most spatial domain techniques
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are undesirable when applied to the Fourier domain. In fact the

only promising Féurier domain bandwidth reductién technique seems
to be the expedient of not transmitting certain data points. The
advantage of this technique is that a large percentage of image
energy can be transmitted with a large bandwidth reduction, thereby
allowing retransformed images to be more complete than an image
from an equivalent bandwidth reduction on the spatial domain alone.
This capability of transmitting a high percentage of energy with a
small percentage of data points allows the developmeqt of an efficient
sequential image construction technique which becomes valuable over
communication channels where high energy and wide bandwidth are
expensive commodities. In particular, if a spacecraft is to transmit
images from a distant planet to earth, an energy constraint seems
likely., With the sequential image construction technique a few data
points will give the viewer a good idea of the image on the dis‘tant
planet. If the image looks interesting, more frequency data points
can be transmitted and a better image construéted. This technique
can be continued until the entire bandwidth of the image is reached or
until the viewer is satisfied with the results. If the first image is
uninteresting, the spacecraft camera can Be commanded to a new
scene and a second image can be constr‘ucted. This sequential image

construction techn‘ique will allow a feedback communication system
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to be developed in which the operator on earth has close control on
the most efficient Way to conserve power and bandwidth in space-
crafts on'distant planets in videq communication.

The four highlighted results discussed above were primarily
made possible through the use of the high speed Fourier algorithm
presented in chapter 2. The speed of the algorithm has allowed
- numerous two dimensional Fourier transformations that otherwise
would have been impossible to obtain. The algorithm is a modified
version of the Cooley-Tukey approach often cited in the computer
literature [ 7]. It is presented in detail because of the reduction in
number of complex multiplications over complex addition which is a

large factor in some computer systems.

8.3 Future Research

It is anticipated that the results of the research presented here
will be the forerunner to further research and development in the
areas of Fourier coding. Future work need not be restricted to two
dimensional data transmission, but could apply to more conventional
one dimensional systems or more unconventional three dimensional
systems such as are envisioned in future holographic communication
techniques. Areas in which immediate effort should be expended
include the development of high speed two dimensional algorithms,

and special purpose Fourier transforming computers. In addition,
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frame differencing techniques, where only new data in temporally
adjacent frames of television information is transfnitted, should be

investigated making use of the Fourier domain,



APPENDIX

The appendix contains the experimental information necessary
to develop a laboratory facility capable of reproducing the results
reported in this dissertation. Detail is not included but brief des-

criptions of both hardware and software systems are provided.

A.1 Hardware Equipment

The basic piece of hardware equipment used in the experimental
phase of this research is a general purpose digital computer. The
computer along with the other hardware systems used is displayed
in block diagram form in figure A-1, The computer consists of a
central processor and a nearly autonomou;s buffer, The memory
cycle time is three microseconds with a memory storage capacity
of 8192 eighteen bit computer words. There are six registers which
all have eighteen bit word lengths and consequently single precision
integer values are bounded by % 217—1. Since two dimensional pro-
cessing requires a tremendous amount of bulk storage, six magnetic
tape units are incorporated in the computer peripheral equipment.
In addition, other standard digital I/0 equipment necessary for

program preparation is available. This equipment includes an

input-output typewriter, high speed card reader, line printer, and

128
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card punch., The above equipment éomprises an information pro-
cessing system deéigned and built by Thofnpson;Rarho-Wooldridge ;
Inc. and designated the TRW 530, All spécifications for equipment
and operations are included in their literature peftaining to this
system. In addition to the above sténdard chompulfer facility, a digital
to two dimensional optical converter is necessary. Such a device
has been built and has been used for all photographic work. Three
digital to analog converters are driven by the cbmputer to provide
analog X and Y sweep and Z axis video voltages to an eight by ten
inch 'cathode ray tube monitor. The picture to be displayed is placed
on a magnetic tape unit which is then commanded to transfer its data
to the output cathode ray tpbé rﬁonii:or. 'A camera is then focussed
on the monitor and a time exposure’ taken to record the picture on

photog raphic‘ film.

A.2 Two Dimensional Fourier Program
The Fourier algorithm described in chapter 2 is for a one-
diménsional case. For a two-dimensional transformation the
algorithm is simply used 2N times. A two-dimensional Fourier
transform program has been developed to Fourier transform f(x,v)
into F(u, v) using the above algdrithm.

The two-dimensional Fourier transform program presented
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here is described with particular reference to figure A-2 depicting
‘control and data flow of the program. The prograr;n is quite versaﬁ;ile
and consequently requires certain operator inpu‘ts.’ Specifically the
operé.tor defines the following three inputs.
1) Dimensgions of input (i.e., number of samples ip the
x and y direction. The number of samples N in each

direction must be a power of two, N = 2" for any n)

2) Real or complex input (i. e., whether each sample is

real or complex)

3) Normalizing constant. This decision is necessary
in order that high frequency low amplitude information
is not lost due to normalization; or alternately, so

that overflow does not occur,

Once the operator has specified the input format the control
program takes over and the entire program is now automatic. The
control program generates the compléx coefficient adresses, controls
individual program sequencing, and generates spectral point storage
addresses. To perform these functions the control program must
‘accept the operator input parameters, store and type output
messages, set up the proper variables as a function’ of the input
pa-rameters and test and initialize‘all magnetic tapes. A subfunction

of the control program is to output, under control of a test switch,
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the Fourier values and spectral ‘points as well as the program
number designatiﬁns. This information is typed oﬁ the 1in§ printer
and is only used for debugging purposes. The control program
initiates the shifter program, the spectral point generator, and the
coefficient generator, The order in which each of these three pro-
grams occurs is immaterial as all three must be complete before
the comp‘utation program can commence.

The shifter program takes the inp*ut function which is stored on
magnetic tape and causes a phase shift in that informgtion sd that the
Fourier transform output will be centered. This is ne¢cessary since
the Fourier algorithm is designed with the origiﬁ in the upper left
corner of the input function. The phase shift introduced by this pro-
gram is implemented by changing the sign of the number in each
position when the sum of the space coordinates, x+y, is odd. This
particular phase shift will cause the frequency domain function to be
shifted to the center according to the Fourier shifting theorem. This
can be verified for the finite Fourier case by defining the following

functions. Let

A1 N-1N-1 2mi
Flo,v) 2 = % 3 fl,y) exp { "I (rutyv)} (A.1)
’ x,y=0 '

and let
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N-1N-1

.
: T YEO(-I)X+Yf(x’Y) exp { 52 Geutyv)} (A.2)

G(u,v) =

Then by the basic relations

(-1) = cosm = e ‘ (A. 3a)
-1)* = &% (A.3b)
-1y = & (A. 3c)
+ i1 (x+
(1)1 = T lHY) (A.3d)
the relation between G(u,v) and F(u,v) is found to be
p NoIN-1 2mi
Glu,v) = = = T f(x,y) exp{—— (xutyv) +i1‘r(x+y)} (A.4)
N _ N
x,y=0
or
: N-1N-1 :
. 1 2mi N 2mi N
Glu,v) = N z Z_'_ f(x,vy) exp{ N x<u+z>}exp{ N y<v+2>}
x,y=0
(A. 5)
and finally
_ N N
Gla,v) = F(utz, vt3 o (4. 6)

The shifter program causes the shifted input function to be
written on a second tape. When this operation is completed, the
program signals the computation program. The spectral point

generator program generates the N output spectral points in a
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particular sequence. It is this particular sequence that allows for
minimum computa;tions in the Fourier algorithm. The sequence is
the same as would be obtained by counting up from zero to N in
binary and interpreting each count with the significance of the binary
representation reversed, When the spectfal point generator has
generated N points, it signals the computation program that it is
finished. The coefficient generator generates the exponential
coefficient exp { —2—;;—3 k} for all k ranging from zero to IZ—\]-I. These
coefficients are stored on magnetic tape for use in the actual compu-
tation program.

The computation program is the essence of the two-dimensional
Fourier transform program. It begins when the shifter, spectral
péint, and coefficient programs are complete. This program takes
a one-dimensional Fourier transform of each line of the input tape
and stores it oﬁ another tape. It does this by a sieve type of opera-
tion in which the initial data is added together in a certain order so
that minimum computation and storage are utilized. The computation
program determines which operation, PNO through PNn, is to be
used fo calculate the value for a particular spectral point. An
’oper‘ation, PNi will call one or more of tﬂree subroutines which
perform co@plex addition, subtraction, and multiplication. When
the computation program has Fourier transformed the N lines of

the input in one dimension, it passes control to the turn around
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program.

The turn around program performs a 90o rotation on the out-
put of the semi-transformed data. “I‘he data is called ''semi-
transformed' because it has been Fourier transformed in one
dimension only. The turn around program places the rotated semi-
transformed data onto the input tape overwriting the data there since
- it has already beén used. This operation prepares the data for a
second pass through the computation program. The second pass
produces the second dimension of the Fourier transformation and
places the final result on the output tape. The entire program is
now complete,. and the two-dimensional Fourier transformation pro-

gram turns control back to the operator.

A.3 Software Programs

The programs used in the development of the picture process-
ing capability demonstrated in this dissertation are described below.
They will be presented with their code names. The descriptions
will be brief; and complete listings will not be presented as the
listings are only intelligible to those knowledgable in the TRW 530
software Symbolic Instruction Assembly System (SIAS).

SYSTEM: The system program is the master set of instruc-
tions under whose control all other programs are called from the

system library. The system library is a magnetic tape on which all
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programs are stored according to the three letter titles as presented
in this appendix, }'Iy‘he system program is written in ma.éhine lan-
guag.e and is read into memory whenever tape unit 0 is seleéted
from its load point position.’ The prograrﬁ conv‘erses with 'the opera-
tor through the typewriter. |

FOIL: The one dimiensional Fourier‘Transform program féilows
the algorithm presented in chapter 2. Itis wfiften in machiﬁg
language for speed of computation considératiohs and iscontaiﬁed
in a loop such thé.t an entire plane of data is one dimensionally

Fourier transformed.

STA: A turn around program is needed to complete the two
dimensional Fourier transformation. This program takes the one’
dimensionally transfbrmed result of the output of Fbl and rotates
the plane 90°. The rotation is performed by a type of “scanning
routine that seylecl:s the correct elements from lines of the prerotated
plane and forms new lines of rotated information,

SAN: This program scans a complex plane of dafa to find the
positive and negative extremes. | It then adds the negative extreme
_ to the entire plane forming a totally‘positive complex plane. Then
it extracts the real components of each cbkrnplyex’samplve and norma-
lizes these components to six bits, This mékes the output of the

program a real positive plane compatible with the cathode ray tube
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display system. This program is very useful for preparing doubly
trans:formed scenes for output vdisplay as it autornatically adds the
neceSsary constant bias that‘ waé 1ost’in not transmitting the origin | ,
frequency sample in the Fburilér d§ma'1n.

llﬂ ﬁThis machine 1angﬁage prbgram is ﬁecesséry for avll
display work. It causes a plane of data stored oﬁ a magnetic tape to
be féad into memory and oﬁt of mémo;'y onto the monitor. This pro-
gram is used in combination ‘with some cvomputer hardware changes
that aﬁiows a pro”gram:instrﬁvction transfér of data tvo the typewriter |
to actually transfér information to tﬁe monitoxi. N

SM1: This program forms the square root of the magnitude of
each cémplex sambple of a piane and ‘t].aen normalizes eaéh number to
six bits. The outpﬁt of this progx;afn is real, positive, and compati-
ble wi.thv thé monitor and is used in displaying frequency domain
information. One vafiation of this progi‘am will form the naturai
10gafcithm of the mé.ghitude ofke(ach element in the plane and is used
for obtaining knowle&ge of low ampiitude infofmation in the fréquencér
domain. A’ sec ond varial;ion allé%;vs a clipping level to be selected
suc}:; that all.values below that level are renormalized to the maxi-
mum 6 bit thereby aliowing a .linear. output of vefy low amplitude
information. |

S3D: This program scans a normalized real positive plane

and forms an output tape that contains a three dimensional view of
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the relative amplitudes of the original plane. When scanned -onto the
monitor, a perspective display rlesults.‘ Such a méchanism was used
in the demonstration of dynamic range in chapter 3.

SSH: This prograrﬁ takes half a Fourier frequency plane and
forms a full plane with two optibns. The first is that thg second half
of the new plane will be identically zero. This allows for Hilbert
transform reconstruction. The second opﬁoh forms the sécond half
of the new plane as the symmetric conjugate of the first half. When
this full plane is two dimensionally Fourier transformed, a real two
dimensional function results,

| SGA: This program quantizes each real and imaginary sample
to one of an operator determined number of qlianturn levels from a
Gaussian distribution. An individual quantum scale is used for each
frequency sample and is determined by a variance function at the
given frequenéy. The program reads in the frequencjr plane to be
quantized on one tape and the variance plane on a second tape, A
third tape is used as the output or quantized frequency domain., Two
additional options are available in the pfogram and allow for coding
as weéll as quantizing and decoding. The coding option would be used
if the frequency plane were to be subjected to some t};pe of channel
disturbance and the decoding option would act as a receiving station.

SRQ: This program operates very similarly to the Gaussian
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quantization program, SGA, except the square root of the ma‘gnitu'de
of ea;:h complex frequency sample is formed and is -the_quantized to
one of a pre-determined number of quantum levels according to a
Rayleigh distribution whose variance again changes as a function of
frequency. Also the phase of each complex frequency sample is
formed and quantized to one of a pre-determined number of quantum
levels. 'fI‘,his program also has two tapes as inputs and one as an
output with the options of coding and decoding as desired.

SFQ: This program implements a lin’e4arr quantization rule. It
quantizes each real and imaginary sample linearly between plus and
minus the most extreme values of the plane,

§_CiI_—I__: This program introduces a bit error from a uniform
error probability density at any error rate from p =v10_6 top = 1.
Such a program al}ows for the randqm injection of errors at a given
rate of input data exactly as a binary syﬁmetric communication
channel. The program is lengthy because each bit that enters the
channel requires a random number generator to be called and com-
pared with an error threshold.

SFI: This program ’simple adds, subtracts, or multiplies two
planes together. It is useful for filtering ahd noise removal appli-
cations., In particular a plane can be formed which emphasizes
certain frequencies and when multiplied by/ the Fourier transform

of a scene the output becomes a filtered frequency domain ready for
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retransformation.

SLB: In the course of two dimensional pictufe processing it
becomes imi:erative that intermediate results be stored for later
reference. A picture library has been developed for this purpose.
The library stores consecutive pictures serially line by line. An
index is pfovided for a title and dimensions of planar data stored.
The program has three options, the first of which will allow the
operator to initiate a tape to begin a new library. A second option
allows a picture to be stored by title and dimension at any time on
the library. The third option allows the operator to read any picture
from the library by title and dimension.

SJP: A more efficient library procedure has been developed
forv.storing pictures normalized to six bits. Rather than storing a
computer word of‘ 18 bits for each picture sample, three picture
sarhples are stored per computer word. This increases the storage
efficiency threefold, but of course cannot be used to store numbers
out of the 0-63 range.

SPG: Often a simple plane of data is desired for computatidn

purpéses. This program allows a plane to be formed using a simple
coded typewriter input. Restrictions on che resolution of the plane
are 256, 512, 1024 and samples must range between 0-999,

SGE: A much more generalized picture generating technique

is afforded by this program. Data is read into the computer on cards
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and any range of positive or negative samples is possible.

SHS: A program that is often used for trouble' shooting as well
as data gathering is the histogram program. This program reads a
tape into memory and makes a histogram of the different numerical
values on that tape. it will histogram a variable dimensional plane
of data and can process as many as 1000 different levels. The out-
put of the program is a printer listing of the level and frequency of
occurrence of each level. In addition a>norma1ized graph is plotted
for graphic representation.

_SEB_ A program hé,d been written to make statistical measure-
ments on the aifference of two planes. Two tapes are used for inputs
to the program and the absolute vélue of the difference is placed on
a third tape. The maximum difference is printed by the typewriter
as are both mean square and variance er'rors’per element. A histo;
gram can be made of the output tape thereby forming a distribution
of absolute value errors.

SRO: This program rotaes a plane 1800, and is necessary
when the SER program is used for error measurement. The 180°
rotatién counter balances the two 90° rotations inherent in the posi-
tive Fourier transform kernel. Two tape uhits are used for this
program, the output tape being obtained by reading the input tape

backwards.
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_S__S_§_: This program multiplies a spatial domain scene by
(_1)x+y in order that the frequency domain be propérly centered on
the monitor display. | |

SGU: This program calculates a normalized two dirhensional
- Gaussian plane and writes it on a; tape. Each dimension has an inde-
peﬁdent v;riaﬁce allowing stretching or shrinking of either dimension.
The results of the program have been used as mutliplicative filters
and power ’spectral dénsities.

SEX: This program extracts either the real of imaginary field
of data from a complex plane of data. It is used in evaluating Hilbert
quadrature filter retransformation techniques back to the spatial
domain.

SEN: This program is designed to measure the total energy in
a real or complex plane of data. It can be used in measuring energy
transmitted in bandwidth reduction schemes and in scanning algor-
ithms. The input to the program is a single tape and the output is on
the tyepwriter.

SMA: The digital implementation of the complex matched
filter correlator is in this program. Two tapes, a master and
processed frequency plane, are inputs. Ti;e program measures the
correlation of the processed plane with respect to the master plane.

The four significant figure output is on the typewriter.
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CPY: This is a utility program that copies one tape onf:o
another irrespective of the data format.

SCI: This program forms a circular binary filter of variable
radius which has the capability of being used in bandwidth reduction |
and low pass or high pass filtering schemes. _

SBG: This program meaéures the energy of a F‘ourier domain
: ’plane as a fp.nction of radial distapc’e away from the origin. The
output is graphical as well as numerical and is presented on the line

printer.
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